This note aims to subsume several apparently unrelated models under a common framework. Several examples of well-known quantum field theories are listed which are connected via stochastic quantization. We highlight the fact that the quantization method used to obtain the quantum crystal is a discrete analog of stochastic quantization. This model is of interest for string theory, since the (classical) melting crystal corner is related to the topological A-model. We outline several ideas for interpreting the quantum crystal on the string theory side of the correspondence, exploring interpretations in the Wheeler-De Witt framework and in terms of a non-Lorentz invariant limit of topological M-theory.