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WHY ARE WE HERE? CONFORMAL FIELD THEORIES

extrema of the RG flow critical phenomena
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WHY ARE WE HERE? CONFORMAL FIELD THEORIES ARE HARD

Most conformal field theories (CFTs) lack nice limits

where they become simple and solvable.

No parameter of the theory can be dialed to a

simplifying limit.
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WHY ARE WE HERE? CONFORMAL FIELD THEORIES ARE HARD

In presence of a symmetry there can be sectors of the theory

where anomalous dimension and OPE coefficients simplify.
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THE IDEA

Study subsectors of the theory with fixed quantum numberQ.

In each sector, a largeQ is the controlling parameter

in a perturbative expansion.
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NOT AN ORIGINAL IDEA
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NO BOOTSTRAP HERE!

This approach is orthogonal to

bootstrap.

We will use an effective action.

We will access sectors that are difficult

to reach with bootstrap.

(However, arXiv:1710.11161).

https://arxiv.org/abs/1710.11161
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CONCLUSIONS

We consider theO(N) vector model in three dimensions. In the IR it flows to a

conformal fixed point [Wilson & Fisher].

We find an explicit formula for the dimension of the lowest primary at fixed

charge:

ΔQ =
c3/2
2
√
π
Q3/2 + 2

√
πc1/2Q

1/2 – 0.094 +O(Q–1/2)
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CONCLUSIONS: O(2)
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SCALES

We want to write aWilsonian effective action.

Choose a cutoff Λ, separate the fields into high and low

frequency φH , φL and do the path integral over the

high-frequency part:

eiSΛ(φL)= ∫DφH eiS(φH ,φL)
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SCALES

We want to write aWilsonian effective action.
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SCALES

• We look at a finite box of typical length R

• The U(1) chargeQ fixes a second scale ρ1/2 ~ Q1/2/R

1

R
� Λ� ρ1/2 ~

Q1/2

R
� ΛUV

For Λ� ρ1/2 the effective action is weakly coupled and

under perturbative control in powers of ρ–1 .
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NON-LINEAR SIGMA MODEL

In a generic theory™, picking the lowest state of fixed charge induces a

spontaneous symmetry breaking.

The low-energy physics is described by a Goldstone field χ.

Using conformal invariance, the most general action must take the form

L[χ] = k3/2(∂μχ ∂μχ)3/2 + k1/2R(∂μχ ∂μχ)1/2 +…

These are the leading terms in the expansion around the classical solution

χ = μt. All other terms are suppressed by powers of 1/Q.
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NON-LINEAR SIGMA MODEL

The energy of the lowest state for this action has the form

E =
c3/2√
V
Q3/2 + Rc1/2

√
VQ1/2 +…

The leading quantum effect is the Casimir energy of the conformal Goldstone.

EG =
1

2
√
2
ζ(–1

2
|S2) = –0.0937…

This is the unique contribution of orderQ0 .
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STATE-OPERATOR CORRESPONDENCE
The anomalous dimension on Rd is the energy in the cylinder frame.

ΔSd–1

Rd

H

R × Sd–1

Sd–1

Protected by conformal invariance: a well-defined quantity.
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TOO GOOD TO BE TRUE?
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TOO GOOD TO BE TRUE?
Think of Regge trajectories.

The prediction of the theory is

m2 ∝ J(1 +O(J–1))
but experimentally everything

works so well at small J that String

Theory was invented.

FIG. 2. The (n, M2)-trajectories for the states a0(10++), a2(12++) and a4(14++) with a) µ2 = 1.38 GeV2 and b) µ2 = 1.10
GeV2; Two variants for the f2(02

++)-trajectories with the slope parameter c) µ2 = 1.38 GeV2 and d) µ2 = 1.10 GeV2. The
f0(00

++)-trajectories for e) real resonance states and f) K-matrix pole states. As in Fig. 1, the open circles stand for states
predicted by the present classification.

5
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SELECTED TOPICS IN THE LARGE CHARGE EXPANSION
• O(2) model [Hellerman, DO, Reffert, Watanabe] [Monin, Pirtskhalava, Rattazzi, Seibold]

• fermions [Komargodski, Mezei, Pal, Raviv-Moshe] [Antipin, Bersini, Panopoulos]

[Hellerman, Dondi, Kalogerakis, Moser, DO, Reffert]

• holography [Nakayama] [Loukas, DO, Reffert, Sarkar] [de la Fuente]

[Guo, Liu, Lu, Pang] [Giombi, Komatsu, Offertaler]

• large N [Álvarez-Gaumé, DO, Reffert] [Giombi, Hyman]

• ε double-scaling [Badel, Cuomo, Monin, Rattazzi]

[Arias-Tamargo, Rodriguez-Gomez, Russo]

[Antipin, Bersini, Sannino, Wang, Zhang] [Jack, Jones]

• non-relativistic CFTs [Kravec, Pal] [Hellerman, Swanson] [Favrod, DO, Reffert]

[DO, Reffert, Pellizzani]

[Hellerman, DO, Reffert, Pellizzani, Swanson]

• N = 2 [Hellerman, Maeda] [Hellerman, Maeda, DO, Reffert, Watanabe]

[Bourget, Rodriguez-Gomez, Russo] [Grassi, Komargodski, Tizzano]

[Cremonesi, Lanza, Martucci]

• bootstrap [Jafferis, Zhiboedov]

• resurgence [Dondi, Kalogerakis, DO, Reffert] [Antipin, Bersini, Sannino, Torres]

[Watanabe]



WHAT HAPPENED?

We started from a CFT.

There is no mass gap, there are no particles, there is no Lagrangian.

We picked a sector.

In this sector the physics is described by a semiclassical configuration plus

massless fluctuations.

The full theory has no small parameters but we can study this sector with a

simple effective field theory (EFT).

We are in a strongly coupled regime but we can compute physical observables

using perturbation theory.

would you like to know more?



TODAY'S TALK

The EFT a non-relativistic conformal field theory

• An EFT for a CFT.

• Experimental realization (ultracold atoms, unnuclear physics).

• Comparison with experiment.





NON-RELATIVISTIC CFT



THE SCHRÖDINGER GROUP

The Schrödinger group describes the symmetries of the free-particle

Schödinger equation

i
∂

∂t
ψ = –

4
2
ψ

Its algebra contains the Galileian algebra, plus a central extension and two

more generators that, together with time translations form an SL(2,R) algebra.

Contraction of the conformal group, just like the Galileian group is a

contraction of the Poincaré group.

It is the symmetry of a non-relativistic conformal field theory.



ATOMS AT CRITICALITY

Figure 3: Qualitative phase diagram of the BCS-BEC crossover as a function of temperature
T/EF and coupling 1/kFa, where kF is the Fermi momentum and a the scattering length
(based on the results of [27]). The pictures show schematically the evolution from the BCS
limit with large Cooper pairs to the BEC limit with tightly bound molecules. Unitarity
(1/kFa = 0) corresponds to strongly interacting pairs with size comparable to k

�1
F . The

pair-formation crossover scale T
⇤ diverges away from the transition temperature Tc below

which a condensate exists and the system is superfluid, as the attraction increases. The best
quantitative estimates of Tc and T

⇤ along with the question of the pseudogap at unitarity
are discussed in the text.

8



UNNUCLEAR PHYSICS
Neutrons have a large negative scattering length a ≈ –19 fm compared to the

effective range of the interaction r0 ≈ 2.8fm.

There is a range of energies in which a system of neutrons behaves as a

composite object, controlled by a NRCFT.
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of a tetraneutron system. The first indication for a possible bound 
tetraneutron was reported in 20022 from a break-up reaction of  
14Be into 10Be + 4n. The result stimulated several theoretical studies, all 
agreeing on the same conclusion: a bound tetraneutron state cannot 
be obtained theoretically without significantly changing our under-
standing of the nuclear forces9–11. However, the possibility of the 
four-neutron system existing as a resonant quasi-bound state with a 
very short lifetime on the order of a few 10−22 s, before decaying, has 
remained an open and challenging question. It was later found that the 
result reported in ref. 2 is also consistent with such a resonant state with 
the limit on its energy ≲E 2 MeVr  (ref. 3).

A decade later, in 2016, an indication of a tetraneutron resonance 
was reported4. A DCX reaction was used, but in contrast to previ-
ous attempts, this time the reaction was induced by a high-energy  
8He radioactive beam. 8He is the most neutron-rich bound isotope, and 
the 8He(4He, 8Be) reaction channel was investigated. The advantage of 
using a radioactive beam is the freedom of selecting the reaction partner  
in a so-called recoil-less production (without momentum transfer) 
of the four-neutron system. The energy of the state was found to be 
 Er = 0.8 ± 1.4 MeV, and an upper limit on its width was estimated as  
Γ ≤  2.6 MeV. However, owing to the large experimental uncertainty, the 
possibility of a bound state could not be excluded by this experiment.

In this work, we used the quasi-elastic knockout of an %-particle  
(4He nucleus) from a high-energy 8He projectile induced by a proton 
target to populate a possible tetraneutron state. The inverse-kinematics 
knockout reaction He(p, p He)8 4  at large momentum transfer is well 
suited because the 8He nucleus has the pronounced cluster structure 
of an %-core (4He) and four valence neutrons with small 4n centre- 
of-mass motion, such that after the sudden removal of the %-particle, 
a rather localized four-neutron system with small relative energy 
between the neutrons is produced, which may have a large overlap with 
a tetraneutron state12,13. The chosen kinematics at large momentum 
transfer between the proton and the %-particle ensures that the 
four-neutron system will recoil only with the intrinsic momentum of 
the 4He core in the 8He rest frame, without any further momentum 
transfer, thus allowing the recoil-less production. Furthermore, 
final-state interactions between the four neutrons and the charged 
particles are also minimized owing to the large momentum transfer, 
separating charged reaction partners from the neutron spectators in 
momentum space (Fig. 1).

The experiment took place at the Radioactive Ion Beam Factory 
operated by the RIKEN Nishina Center and the Center for Nuclear 
Study, University of Tokyo, using the Superconducting Analyzer for 
Multi-particles from Radio Isotope Beams (SAMURAI)14. A primary 
beam of 18O was directed onto a beryllium production target produc-
ing a cocktail of radioactive nuclei from fragmentation. The secondary 
8He beam was separated using the BigRIPS fragment separator and 
transported with an energy of 156 MeV per nucleon to a 5-cm-thick 
liquid-hydrogen target15 located at the SAMURAI spectrometer (Fig. 2).

The incoming beam was measured upstream of the target on an 
event-by-event basis using scintillators for charge identification as 
well as momentum measurement, and two drift chambers for tracking 
(Extended Data Fig. 1).

The outgoing charged fragments (%-particle and proton) emerging 
from the quasi-elastic scattering were detected using a combination of 
detectors downstream of the target. Three planes of silicon-strip detec-
tors, where each plane consists of two orthogonal layers enabling posi-
tion measurements in both horizontal and vertical directions, served 
for tracking, energy-deposition measurement and reconstruction 
of the reaction vertex inside the target (Extended Data Figs. 2 and 3).

Behind the silicon planes, both charged fragments were bent through 
the magnetic field of the SAMURAI spectrometer, which was oper-
ated at a nominal magnetic field of 1.25 T in the centre of the magnet.  
The experiment was designed to detect an %-particle and a proton that 
emerge from quasi-elastic scattering close to 180° in the centre-of-mass 

frame (Fig. 1). Under these kinematical conditions, their resulting out-
going momenta are very different from each other in the laboratory 
frame, as shown in Figs. 1 and 2. The knocked-out %-particle is slowed 
down from its initial momentum, that is, with the incoming beam veloc-
ity, to a momentum of about 330 MeV/c per nucleon after the reaction 
(where c is the speed of light). In contrast, the proton, which was at rest 
in the initial state, becomes the fastest particle in the reaction, gaining 
a typical momentum of about 860 MeV/c. At the focal plane, a drift 
chamber is used for tracking of the fragments after the magnet, and two 
scintillator walls located side by side, which cover a wide momentum 
range, are used for energy-deposition and time-of-flight measure-
ments. The %-particle and proton are identified from a combination 
of their measured energy deposition, each in a different scintillator 
wall, and their position in the drift chamber (Extended Data Fig. 4). 
Their momenta are determined precisely from their reconstructed 
trajectories through the SAMURAI spectrometer.

As no additional momentum is transferred to the neutrons in the 
reaction, they continue moving with nearly beam velocity and can be 
detected, in principle, by the neutron detectors placed at a forward 
angle behind the SAMURAI spectrometer. The detection efficiency for 
neutrons is much lower than that for charged particles and decreases 
quickly as a function of the number of detected neutrons. The small 
p–4He elastic cross-section at backwards centre-of-mass angles of less 
than 1 microbarn (ref. 16) resulted in the relatively low statistics of 422 
events obtained for the He(p, p He)8 4  reaction. These factors made it 
impossible to detect more than two neutrons in coincidence with the 
charged particles. Therefore, the neutron detection is not a part of the 
current study, aside from a consistency check (provided in Supple-
mentary Information) of the near recoil-less production of the free 
neutrons.

The combined selection of event-by-event identification of incom-
ing 8He-beam particles in coincidence with the knocked-out %-particle 
and the scattered proton defines the He(p, p He)8 4  channel. From a 
precise measurement of the momenta of the charged particles, the 
energy spectrum of the 4n system is reconstructed assuming energy 
and momentum conservation through the missing mass:

E E m= − − 4 , (1)4n miss
2

miss
2

nP

where Emiss (Pmiss) is the energy (momentum) component of the 
missing-momentum four-vector, and mn is the neutron mass. Using 

Laboratory frame
8He Target 

proton

4He

Zbeam

Centre-of-mass frame
Tc.m.  160°

Target proton

Scattered proton

Projectile 4He

Scattered 4He

S

Proton

Fig. 1 | Schematic illustration of the quasi-elastic reaction investigated in 
this work. Top: quasi-elastic scattering of the 4He core from a 8He projectile off 
a proton target in the laboratory frame. The length of the arrows represents the 
momentum per nucleon (the velocity) of the incoming and outgoing 
particles. Zbeam is the beam axis. Bottom: the equivalent p–4He elastic scattering 
in their centre-of-mass frame, where we consider reactions at backward angles 
close to 180°, θc.m. ≳ 160°. In this frame, the momentum of the proton balances 
that of the 4He, P P= −p 4He, that is, the proton is four times faster than the 4He.
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this notation, a bound 4n system will appear at E4n < 0 whereas a resonant 
state will appear at E4n > 0. The missing momentum in equation (1) is 
defined by P P P P P= + − −miss He p(tgt) He p8 4 , where the four-momenta P  
on the right-hand side of the equation are those of the incoming beam, 
target proton, knocked-out α-particle and scattered proton, respec-
tively.

The He(p, p He)6 4  knockout reaction was measured with almost 
exactly the same experimental conditions as for 8He, except for some 
small differences in the energy of the incoming beam and the beam 
profile (Supplementary Table 2), and served as a benchmark for verify-
ing the analysis and calibration procedures. In the case of 6He, the 2n 
system is produced by the sudden removal of the 4He core.  
The two-neutron relative-energy spectrum is expected to be well 
described by theory taking into account both the well established 
ground-state wavefunction and the final-state scattering wave of the 
two neutrons, predicting a low-energy peak around 100 keV. Similarly 
to the 8He case, we define the missing mass (P P%He He8 6  and m m4 % 2n n ).
The measured missing-mass spectrum for 6He is shown in the right 
panel of Fig. 3 together with the theoretical calculation17 convoluted 
with the experimental acceptance and resolution (blue curve).  
The energy range shown represents the one covered by the experimen-
tal acceptance. The calculation is compared with the data by imple-
menting it into an event generator for the quasi-elastic reaction, which 
uses the measured p–4He differential elastic cross-section16 as an input, 
as well as the measured internal momentum distribution of the 
α-particle in 6He (ref. 18). The generated events are transported through 
the experimental set-up in Geant4 simulations to account for the 
experimental acceptance and detector resolutions. The excellent agree-
ment of the simulated theoretical distribution with the measured 
spectrum confirms the analysis and the calibration for determining 
the missing mass. The missing-mass resolution obtained in the meas-
urement is approximately 1 MeV sigma, and is almost constant over 
the measured energy range. The systematic uncertainty for the deter-
mination of the absolute energy was estimated from this measurement 
to be 0.4 MeV and that of the energy width to be 0.27 MeV (Methods). 
Also shown in the right panel of Fig. 3 (green curve) is a possible small 
background contribution coming from two-step process where 4He is 
produced in a first step (see Methods and following discussion for 8He). 
This background was estimated from the measured cross-section to 
contribute 1% of the total number of measured events.

The measured missing-mass spectrum of the four-neutron system 
from the He(p, p He)8 4  reaction is shown in the left panel of Fig. 3.  

Two components are observed: a well pronounced peak in the 
low-energy region with an energy around 2 MeV and a broad distribu-
tion at higher energies attributed to a non-resonant continuum 
response13, a direct four-body decay.

The shape of the non-resonant continuum spectrum of the four neu-
trons has been studied theoretically for the case of the four-neutron 
structure formed after the sudden removal of the α-core from 8He  
(ref. 13). The creation of the system is investigated by introducing into 
the Schrödinger equation a source term that accounts for the reaction 
mechanism producing the four-body system, and that depends explic-
itly on the internal structure of the parent nucleus 8He. The 8He 
ground-state wavefunction (without final-sate interaction) was treated 
using the five-body ( He + 4n4 ) cluster orbital shell model approxima-
tion (COSMA)12. The exact shape of the non-resonant continuum is 
sensitive to the hyperradius of the source, ρsour an internal radius of the 
4n system, described in the hyperspherical harmonics basis. A hyper-
radius of 5.6 fm is considered by the theory as the most realistic, as it 
reproduces the correct experimental radius of 8He in the COSMA model. 
This results in a broad distribution centred around 30 MeV, in good 
agreement with the observed experimental spectrum.

We model the spectrum as follows:

f E af E bf E cf E( ) = ( ) + ( ) + ( ), (2)4n res 4n con 4n bkg 4n

where a, b, and c are constants, fres is a Breit–Wigner function repre-
senting the possible resonance structure, and fcon is the non-resonant 
continuum part presented above with the hyperradius as a parameter.  
The last term in equation (2), fbkg, represents possible background 
events coming from competing processes. Several processes were 
investigated and quantified (Methods), where the only non-negligible 
contribution found is from a two-step process involving 6He (4He) pro-
duction: proton-induced break-up of 8He into 6He (4He) followed by 
a p–4He quasi-elastic scattering. The resulting energy distribution 
is broadened and shifted to lower energies compared with the pure 
6He case (right panel of Fig. 3) owing to the two-step process, which 
has been taken into account in the simulation of fbkg. This background 
was estimated from measured cross-sections to contribute 2.6% to the 
total number of measured events (Methods), which has been used to 
determine the normalization constant c.

The experimental spectrum was then fitted with the energy- 
dependent function given in equation (2), where the fit function was 
convoluted with the experimental response, taking into account 
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Fig. 2 | Experimental set-up and charged fragments momenta. Left: 
schematic view of the experimental set-up. The 8He secondary beam at 156 MeV 
per nucleon is transported from the BigRIPS (Big RIKEN projectile-fragment 
separator) into the SAMURAI set-up, where it hits a liquid-hydrogen (LH2) 
target. In a quasi-elastic (p, p He)4  reaction, the 4He core is knocked out from the 
8He projectile. Scintillator detectors and drift chambers are used for beam 
identification and tracking. The trajectories of the outgoing fragments are 
tracked by three silicon (Si) planes and bent afterwards through the SAMURAI 
spectrometer towards the focal-plane detectors. Two neutron-detector arrays 

were placed at a forward angle behind the SAMURAI. An additional scintillator 
wall was placed at smaller bending angle to detect the unreacted 8He beam. 
Right: measured momenta of the knocked-out 4He and the scattered proton 
after the quasi-elastic scattering (symbols). The momentum distribution of the 
incoming 8He beam is shown for comparison. The solid curves are the results 
from the simulation. The cyan (magenta) dotted line represents the upper 
(lower) limit of the 4He (proton) momentum expected from the simulation 
assuming a quasi-elastic scattering, and the orange line indicates the central 
beam momentum. 



A LARGE-CHARGE EFT: THE INVARIANT OBJECTS
The physics in a sector of fixed charge is described by a Goldstone field π.

Start from a Schrödinger-invariant object

U = ∂tχ –
1

2
∂iχ∂iχ

In the fixed-charge vacuum χ = μt + π, where μ is an increasing function of Q

If we add a background U(1) field A0

U = ∂tχ – A0 –
1

2
∂iχ∂iχ

and a new Schödinger-invariant operator appears:

Z = 4A0 –
1

3
(4χ)2

Now we want to write themost general EFT with these operators.



A LARGE-CHARGE EFT: SCALING DIMENSIONS
Themost general operator in the EFT is

O(n,m) = (∂iU)2mZnU5/2–(3m+2n)

where m and n are integers to have a local action.

Time and space scale differently. The dynamical exponent is z = 2

[∂i] = 1 [∂t] = z = 2

and

[U] = 2 [Z] = 4

and all in all,

[dt d3x] = –5 [O] = 5.



A LARGE-CHARGE EFT: Q-DIMENSION

We have an infinite number of operators. We need an ordering principle.

In pion physics it would be the number of derivatives.

Here the system has no intrinsic scales. We use the scale induced by the fixed

charge: μ. On the ground state χ = μt, so

[O(m,n)]μ = 4 – 2(m+ n)

The leading action is for m = n = 0:

L = c0U
5/2 = c0 (∂tχ – A0 – 12∂iχ∂iχ)

5/2



PHYSICAL OBSERVABLES
What do people measure?

In the case of ultracold Fermi gas, there is a system of atoms confined in a

(laser) harmonic trap.

The quantities of interest:

• energy of the system

• fluctuation spectrum over the ground state

We need to add a background harmonic potential

A0 = =
ω2

2
r2



PHYSICAL OBSERVABLES
What do people measure?

In nuclear experiments: consider a reaction

A1 + A2 → B + n + n + · · · + n︸ ︷︷ ︸
Q

The energy spectrum of B is continuous, with some maximal value E0 and the

cross-section around E0 has the form

dσ

dE
~ (E – E0)Δ(Q)–5/2

where Δ(Q) is the conformal dimension of the unnucleus operator OQ that

describes the neutrons:

〈OQ (t, x)OQ (0, 0)〉 ∝ θ(t)
tΔ(Q) e

–ix2/(2t)



STATE-OPERATOR CORRESPONDENCE
State operator correspondence in CFT: operators inserted in Rd are mapped to

states on R × Sd–1 . The conformal dimension maps to energy.

In NRCFT there is a similar story.

Operators in Rd
states on Rd with a background

harmonic potential.

A0 =

To compute Δ(Q) we add a background field and compute the energy.

It is the same problem!



INHOMOGENEITY: THE CLOUD
The harmonic trap breaks translation invariance.

The ground state configuration is not homogeneous, but it’s a cloud.

The density at the edge goes to zero

The EFT is valid in the bulk, but broken at the edge.



EDGE OPERATORS AND NLO ACTION
We need to add more terms to the EFT. Invariant quantity localized at the edge

Zp = Z
pδ(U)(∂iU)(7–4p)/3

this has dimension

[Zp ]μ =
5 – 2p

3

The first contribution appears at NNLO.

The NLO action is

L = c0U
5/2 + c1

(
∆
U)2

U1/2
+ c2U

1/2 [(4χ)2 – 3(
∆
⊗
∆
χ)2]

where c0 , c1 and c2 are Wilson coefficients.

The controlling parameter is ω/μ.



ENERGY OF THE CLOUD
Energy of the ground state

E(Q)
ω

= Δ(Q) = 33/4

4
ξ1/2Q4/3 – 32/3

√
2π2ξc1Q

2/3 +O(Q5/9)
ξ is the Bertsch parameter, depending on c0 .

Wilsonian parameters from lattice simulations
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Figure 9 – Fit of DMC simulation data up to Q = 20, as described in the text. The solid
black line is leading order in the large-charge expansion, and the gray band is the !"# fit,
including the Casimir correction. The simulation data are as described in the text.

B. Fourier transforms

The following Fourier transforms [!, "] are useful:
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FLUCTUATIONS

The fluctuations about the ground state are described by a Goldstone.

For A0 = 0, the Schrödinger symmetry fixes the dispersion relation

q0 =

√
2μ

3
q

The confining potential changes the story.

• No plane waves

• Discrete spectrum



WHAT TO COMPUTE?
• The response function, i.e. the propagator for the density fluctuations

χ(x1 , x2 ; t1 – t2) = 〈δρ(x1 , t1)δρ(x2 , t2)〉T

• Fourier transform on time and relative position x1 – x2 . Integrate over the

position of the center of mass x1 + x2 .

By the fluctuation–dissipation theorem, the imaginary part is the dynamic

structure factor

S(q0 , q) = –1
π
Im(χ(q0 , q))

For a translation-invariant system

S(q0 , q) = δ(q0 –√2μ

3
q)

We define the dispersion relation is the curve along which S(q0 , q) is peaked.



DYNAMIC STRUCTURE FACTOR
Alternatively, from Fermi’s Golden Rule

S(q0 , q) = ∑
n
|〈0|δρ(n)|n〉|2δ(q0 – E(n))

Measured experimentally with Bragg spectroscopy

observe the evolution of both single-particle excitations and
collective modes in the BEC-BCS crossover. From our
observations of the collective mode, we extract the speed
of sound in the system, while the shifting onset of the
pair breaking continuum reveals the evolution of the
superfluid gap throughout the BEC-BCS crossover.
Finally, we compare current state-of-the-art theories with
our measurement of the gap.
For our experiments, we use an ultracold gas of 6Li atoms

[Fig. 1(b)] in a balanced spin mixture of the lowest two
hyperfine states. We follow an approach similar to the one
taken in [29,30] and trap the gas in a cylindrical box
potential whose walls are formed by blue-detuned laser
beams. This results in a system with an almost constant
density per spin state of n ≈ 0.4=μm3, which corresponds to
a Fermi energy of EF ≈ h × 7 kHz. The strength of the
interparticle interactions is parametrized by the dimension-
less parameter 1=kFa, where a is the s-wave scattering
length and kF ¼ ð6π2nÞ1=3 the Fermi wave vector. The
temperature of homogenous Fermi gases in the BEC-BCS
crossover is challenging to measure [31], but for systems
with an interaction strength of 1=kFa ¼ 0 a technique
based on measuring the total energy of the gas has been

developed [32]. For our system this approach gives us an
estimate of T=TF ≈ 0.13, where T is the temperature and
TF ¼ EF=kB is the Fermi temperature of the gas.
To measure the excitation spectrum of our system, we

employ an experimental technique called Bragg spectros-
copy [43–45]. This technique is based on applying two
laser beams that are far detuned from the atomic transition
so that single-photon scattering is strongly suppressed.
However, stimulated scattering processes, where a photon
from one beam is scattered into the other, can occur if the
difference in energy and momentum between the absorbed
and emitted photon is transferred to the atoms [Fig. 1(a)].
These two-photon scattering events therefore are only
possible if the many-body system allows for the creation
of excitations at this specific combination of transferred
energy ℏω and momentum ℏq. By applying such Bragg
beams and measuring the resulting heating rate dE=dt, we
obtain the dynamic structure factor Sðq;ωÞ ∝ ω−1dE=dt
[46], which quantifies the probability for an excitation with
energy ℏω and momentum ℏq to be created and therefore
describes the excitation spectrum of the system [34].
For our first measurement, we prepare our gas at the

so-called unitary point where the scattering length diverges
and 1=kFa ¼ 0. At this point, the only relevant length scale
in the system is the inverse Fermi momentum 1=kF and the
system becomes scale invariant [8,47]. The gas is also very
strongly interacting, with a collision rate that is comparable
to the inverse Fermi time EF=h of the system. This unitary
Fermi gas is a canonical problem in many-body physics
that was first posed in the context of neutron matter, and has
come under intense experimental study with the develop-
ment of ultracold Fermi gases.
Our measurement of the dynamic structure factor of the

unitary Fermi gas is shown in Fig. 1(c). The two distinct
types of excitations discussed above are immediately visible.
First, there is a narrow, well-defined mode whose energy is
approximately proportional to its momentum, which we
identify as the sound mode of the Fermi gas. For very low
energies, where collisions have time to restore local thermal
equilibrium, it can be understood in terms of hydrodynamics
[48], whereas for higher frequencies or weaker coupling
strengths it is a Goldstone mode [26,27] that is driven by
phase fluctuations of the superfluid order parameter.
The second type of excitations are single-particle exci-

tations in which an atom is lifted out of the Fermi sea and a
particle-hole excitation is created. These particle-hole
excitations appear as a broad continuum in our spectra,
as each particle inside the Fermi sea can be excited to
any unoccupied state if it receives the proper combination
of energy and momentum transfer. However, as the
fermions are paired, this requires an energy of at least
twice the pairing gap Δ, resulting in a well-defined onset
of the continuum. The overall behavior of our measured
dynamic structure factors is in excellent agreement
with theoretical expectations [49]; a comparison to a

(a)

(b)

(c)

FIG. 1. Measuring the excitation spectrum of an ultracold
Fermi gas using Bragg spectroscopy. (a) Absorption image of
a homogeneous Fermi gas trapped in an approximately cylin-
drical box potential. (b) Sketch of the experimental setup. Two
far-detuned laser beams with frequency and wave vector ðω1; k⃗1Þ
and ðω2; k⃗2Þ are used to create excitations with energy and
momentum transfer ℏω ¼ ℏω1 − ℏω2 and ℏq ¼ jℏk⃗1 − ℏk⃗2j
through a two-photon process. (c) Measurement of the dynamic
structure factor Sðq;ωÞ of a unitary Fermi gas. At low energy
and momentum transfer, the Goldstone mode of the superfluid
manifests itself as a linear phononic mode with a slope that
corresponds to the speed of sound vs. Pair breaking excitations
occur as a broad continuum, with a clear onset at an energy
corresponding to twice the pairing gap Δ of the system. For
comparison, the expected value of 2Δ on unitarity [33] is shown
as a red dashed line, a numerical calculation of the center of the
Goldstone mode is shown as a red solid line [34]. All data shown
in this Letter are obtained by averaging over 7–40 individual
measurements.

PHYSICAL REVIEW LETTERS 128, 100401 (2022)
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Is it concave or convex?

H. Biss et al, PRL 128, 100401 (2022)



FLUCTUATIONS
Fluctuations at NLO are controlled by the action

L[π] = –5
8
c0

√
μ – V(2(μ – V)(

∆
π)2 – 3π̇2)

+ c1[ (
∆
π̇)2√
μ – V

+

∆
V ∙

∆
π̇2

2(μ – V)3/2
+

(
∆
V)2(2(μ – V)(

∆
π)2 + 3π̇2)

8(μ – V)5/2
]

+ c2
√
μ – V((Δπ)2 – 3(

∆
⊗
∆
π)2) .

To find an approximate solution we use aWKB expansion

π(t, x) = eiq0 tπ(r)Y`m(θ,φ),

π(u) = exp [ iδS0(u) + S1(u) + iδS2(u) + δ2S3(u) +… ] .
where δ is a new small parameter.



FLUCTUATIONS
• The confining potential introduces a scale ω.

• The charge introduces another scale μ, and then there is the

• Energy of the fluctuations q0 .

Two dimensionless parameters

η =
q0
μ

controlling the EFT,

δ =
ω

q0
controlling the WKB expansion.

low energy
(!" #$%)

high energy
(!" &’()linear zone

fluctuation
energy q0

ω
→
ωµ µ

Figure 2 – Scale separation for the fluctuation energy q0. The dynamics is controlled by the
low-energy scale ω, fixed by the confining potential and the chemical potential µ, acting
as a high-energy scale. In the intermediate region (q0 = ↑(

→
ωµ)), the physics is well

described by the physical optics approximation for the !" #$% and the measured dispersion
is linear. At lower energies ω ↓ q0 ↓

→
ωµ, higher orders in the &’( expansion are needed.

At higher energies
→
ωµ ↓ q0 ↓ µ, higher orders in the #$% are needed.

expansion:

ε =
q0
µ

controlling the #$%, (!."#)

ϑ =
ω

q0
controlling the &’( expansion. (!."$)

The product εϑ = ω/µ = ϖ ↓ 1 is the parameter that controls the perturbative large-
charge expansion of the ground state.

We can distinguish two regimes:

• If ε ↓ ϑ ↓ 1, i.e. ω ↓ q0 ↓
→
ωµ we are in the low-energy regime in which the

dynamics is described by the !" #$% and higher terms in the &’( expansion.
• If ϑ ↓ ε ↓ 1, i.e.

→
ωµ ↓ q0 ↓ µ we are in the high-energy regime in which we can

limit ourselves to the leading &’( terms but need to add higher orders in the #$%.

The two regimes are separated by a linear zone where q0 ↔
→
ωµ in which one can use

the !" #$% and !" &’( (see Fig. %).

The !"# expansion. As we have seen above, in general we can only find an approximate
solution to the #") using the &’( expansion. Here, we provide more detail. For ease
of exposition, we consider a spherically symmetric potential V = V(r) and focus on the
low-energy regime, where we can confine ourselves to the !" in the #$%. Taking the
time-translation and SO(3) rotational symmetries into account, the field takes the form

π(t, x) = e
iq0tπ(r)Yωm(ϑ,φ), (!."&)

"%



LINEAR REGIME
In the linear regime we use LO EFT and LOWKB (physical optics

approximation).

π(u) = D

sin(√3q0ω ∫ u

0

dw√
1 – V̄(w))

u

√
1 – V̄(u)

.

Regularity at the cloud edge V̄(u) = 1 gives the quantization condition for q0
(spectrum)

q0
ω

√
3∫

1

0

dw√
1 – V̄(w)

= nπ, n ∈ Z.



HIGH ENERGY REGIME

NLO EFT and LOWKB

S0 = ±
√
3∫

u

u0

dw
1√

1 – V̄(w) (1 + 2

5c0

c1 – 3c2

(1 – V̄(w))
2

q20

μ2
+O(q

4
0

μ4
)) ,

S1 = k1 – log(u√1 – V̄) + c1 – 9c2

5c0(1 – V̄)2
q20

μ2
+O(q

4
0

μ4
).

• 1/μ2 correction

• The edge position changes and with it the spectrum

√
3
q0
ω ∫

u1

0

dw
1√

1 – V̄(w)
(1 + 2

5c0

c1 – 3c2

(1 – V̄(w))2
q20

μ2 ) = nπ.



LOW ENERGY REGIME
LO EFT and NLOWKB

π(u) = D

sin(q0ω √
3∫

u

0

dw√
1 – V̄(w)

+
ω

q0

1

4
√
3 ∫

u

0

F`[V̄(w)]√
1 – V̄(w)

dw)
u

√
(1 + ω2

12q20
F0(V̄(u))) (1 – V̄(u))

.

and the spectrum is

q0
ω

√
3∫

1

0

dw√
1 – V̄(w)

+
ω

q0

1

4
√
3 ∫

1

0

F`[V̄(w)]√
1 – V̄(w)

dw = nπ , n = 1, 2, 3,…

where

F`[V̄(u)] = ∂2u V̄(u) + 3

u
∂u V̄(u) – 2`(` + 1)

u2
(1 – V̄(u)) .



DYNAMIC STRUCTURE FACTOR

S(q0 , q) = ∑
n
|〈0|δρ(n)|n〉|2δ(q0 – E(n))

In terms of the field

δρ =
15c0
2

μ1/2
√
1 – V̄

∂

∂t
π(t, u)

In the physical optics approximation

〈0|δρ(q)|n〉 ∝
μ1/4

√
c0q0
q ∫

1

0

du sin(qRclu) sin (S0(u)
δ ) .

We solve the integral with a saddle point approximation for δ� 1



HIGH ENERGY REGIME
The saddle equation is

qRcl =
1

δ
∂uS0(ū)

and we can approximate

S(q0 , q) ≈ μ1/2 c0

ωq2
∑
n

q20∣∣∣∂2uS0(ū)
∣∣∣ sin2(qRcl ū)δ(q0 –

nπω

S0(1))
∣∣∣∣
q=

q0√
2μ
∂uS0(ū)

.

At leading order, the saddle condition is

q =
q0√
2μ

√
3√

1 – V̄(u)
=

√
3

2(μ – V(r))
q0 .

This reproduces the local density approximation in condensed matter physics.



DISPERSION RELATION

The dispersion relation is the curve along which S(q0 , q) has a peak.

S(q0 , q) ≈ μ1/2 c0

ωq2
∑
n

q20∣∣∣∂2uS0(ū)
∣∣∣ sin2(qRcl ū)δ(q0 –

nπω

S0(1))
∣∣∣∣
q=

q0√
2μ
∂uS0(ū)

.

Plugging in the WKB result

∂2uS0 = –
√
3∂u V̄

2(1 – V̄)
= 0

the peaks correspond to the stationary points of V (the center of the trap).



DISPERSION RELATION

Plug everything in.

The saddle-point equation is

q =
q0√
2μ

S0(0) =

√
3

2μ
q0 (1 + 2

5c0
(c1 – 3c2)q

2
0

μ2
+O(q0

μ
)4) ,

and the dynamic structure factor is peaked along the curve

q0 =

√
2μ

3
q(1 – 4

15

c1 – 3c2
c0

q2

μ ) ,
In the high energy regime the concavity does not depend on the potential but

only on the Wilson parameters.



LOW ENERGY REGIME

The expectation value of the density fluctuations localizes around the curve

q =

√
3

2(μ – V)q0 [1 + 1

6q20
(∂2r V(r) + 3∂rV(r)

r )] .
The peaks of the dynamic structure factor appear at the roots of the equation

∂r[√ 3

2(μ – V)q0 [1 + 1

6q20
(∂2r V(r) + 3∂rV(r)

r )]] = 0.
Here the shape of the potential is crucial



LOW ENERGY REGIME

For the harmonic potential

q0 =

√
2μ

3
q(1 – ω2q2μ

+…)
the leading correction is concave.

For a superharmonic potential V = r2k , the correction becomes smaller

q0 =

√
2μ

3
q(1 +O ( ω2k

q2kμk ))
Was to be expected: the flatter the potential, the closer we get to the flat box

where there are no 1/q corrections.



FINAL RESULT

low energy

linear regime

high energy

q/
→
ω q/

→
ω0 30 3

q
0/
ω

25

1

q/
→
ω q/

→
ω

q0/ω q0/ω

Figure 5 – Dynamic structure factor for a harmonic trap (left) and a superharmonic confin-
ing potential V̄ = u

16 (right) for µ/ω = 100. The continuous lines show the curves along
which S(q0,q) is peaked (dispersion relations). The discrete structure reflects the finite size
of the system. The width of the peaks in the q direction results from the breaking of transla-
tional invariance. Note that the peaks are more sharply defined in the superharmonic case.
A Lorentzian smoothing with parameter εq0 = .5ω has been applied in the q0 direction
since the system does not break time-translation invariance.

!"

• Numerical evaluation of

the integral for V = r2 and

V = r16 .

• The red line is the saddle

• Discrete spectrum

• The flatter the potential,

the more peaked the

function



BACK TO THE EXPERIMENT

observe the evolution of both single-particle excitations and
collective modes in the BEC-BCS crossover. From our
observations of the collective mode, we extract the speed
of sound in the system, while the shifting onset of the
pair breaking continuum reveals the evolution of the
superfluid gap throughout the BEC-BCS crossover.
Finally, we compare current state-of-the-art theories with
our measurement of the gap.
For our experiments, we use an ultracold gas of 6Li atoms

[Fig. 1(b)] in a balanced spin mixture of the lowest two
hyperfine states. We follow an approach similar to the one
taken in [29,30] and trap the gas in a cylindrical box
potential whose walls are formed by blue-detuned laser
beams. This results in a system with an almost constant
density per spin state of n ≈ 0.4=μm3, which corresponds to
a Fermi energy of EF ≈ h × 7 kHz. The strength of the
interparticle interactions is parametrized by the dimension-
less parameter 1=kFa, where a is the s-wave scattering
length and kF ¼ ð6π2nÞ1=3 the Fermi wave vector. The
temperature of homogenous Fermi gases in the BEC-BCS
crossover is challenging to measure [31], but for systems
with an interaction strength of 1=kFa ¼ 0 a technique
based on measuring the total energy of the gas has been

developed [32]. For our system this approach gives us an
estimate of T=TF ≈ 0.13, where T is the temperature and
TF ¼ EF=kB is the Fermi temperature of the gas.
To measure the excitation spectrum of our system, we

employ an experimental technique called Bragg spectros-
copy [43–45]. This technique is based on applying two
laser beams that are far detuned from the atomic transition
so that single-photon scattering is strongly suppressed.
However, stimulated scattering processes, where a photon
from one beam is scattered into the other, can occur if the
difference in energy and momentum between the absorbed
and emitted photon is transferred to the atoms [Fig. 1(a)].
These two-photon scattering events therefore are only
possible if the many-body system allows for the creation
of excitations at this specific combination of transferred
energy ℏω and momentum ℏq. By applying such Bragg
beams and measuring the resulting heating rate dE=dt, we
obtain the dynamic structure factor Sðq;ωÞ ∝ ω−1dE=dt
[46], which quantifies the probability for an excitation with
energy ℏω and momentum ℏq to be created and therefore
describes the excitation spectrum of the system [34].
For our first measurement, we prepare our gas at the

so-called unitary point where the scattering length diverges
and 1=kFa ¼ 0. At this point, the only relevant length scale
in the system is the inverse Fermi momentum 1=kF and the
system becomes scale invariant [8,47]. The gas is also very
strongly interacting, with a collision rate that is comparable
to the inverse Fermi time EF=h of the system. This unitary
Fermi gas is a canonical problem in many-body physics
that was first posed in the context of neutron matter, and has
come under intense experimental study with the develop-
ment of ultracold Fermi gases.
Our measurement of the dynamic structure factor of the

unitary Fermi gas is shown in Fig. 1(c). The two distinct
types of excitations discussed above are immediately visible.
First, there is a narrow, well-defined mode whose energy is
approximately proportional to its momentum, which we
identify as the sound mode of the Fermi gas. For very low
energies, where collisions have time to restore local thermal
equilibrium, it can be understood in terms of hydrodynamics
[48], whereas for higher frequencies or weaker coupling
strengths it is a Goldstone mode [26,27] that is driven by
phase fluctuations of the superfluid order parameter.
The second type of excitations are single-particle exci-

tations in which an atom is lifted out of the Fermi sea and a
particle-hole excitation is created. These particle-hole
excitations appear as a broad continuum in our spectra,
as each particle inside the Fermi sea can be excited to
any unoccupied state if it receives the proper combination
of energy and momentum transfer. However, as the
fermions are paired, this requires an energy of at least
twice the pairing gap Δ, resulting in a well-defined onset
of the continuum. The overall behavior of our measured
dynamic structure factors is in excellent agreement
with theoretical expectations [49]; a comparison to a

(a)

(b)

(c)

FIG. 1. Measuring the excitation spectrum of an ultracold
Fermi gas using Bragg spectroscopy. (a) Absorption image of
a homogeneous Fermi gas trapped in an approximately cylin-
drical box potential. (b) Sketch of the experimental setup. Two
far-detuned laser beams with frequency and wave vector ðω1; k⃗1Þ
and ðω2; k⃗2Þ are used to create excitations with energy and
momentum transfer ℏω ¼ ℏω1 − ℏω2 and ℏq ¼ jℏk⃗1 − ℏk⃗2j
through a two-photon process. (c) Measurement of the dynamic
structure factor Sðq;ωÞ of a unitary Fermi gas. At low energy
and momentum transfer, the Goldstone mode of the superfluid
manifests itself as a linear phononic mode with a slope that
corresponds to the speed of sound vs. Pair breaking excitations
occur as a broad continuum, with a clear onset at an energy
corresponding to twice the pairing gap Δ of the system. For
comparison, the expected value of 2Δ on unitarity [33] is shown
as a red dashed line, a numerical calculation of the center of the
Goldstone mode is shown as a red solid line [34]. All data shown
in this Letter are obtained by averaging over 7–40 individual
measurements.
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• Experimental measure on

the Fermi gas for V ≈ r16 .

• Seems concave in the

low-energy regime.



CONCLUSIONS

• With the large-charge approach we can study strongly-coupled systems

perturbatively.

• Select a sector and we write a controllable effective theory.

• The strongly-coupled physics is (for the most part) subsumed in a

semiclassical state.

• Precise and testable predictions.

• Remarkable agreement with lattice and experiment.
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