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WHY ARE WE HERE? CONFORMAL FIELD THEORIES

extrema of the RG flow critical phenomena
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WHY ARE WE HERE? CONFORMAL FIELD THEORIES ARE HARD
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Most conformal field theories (CFTs) lack nice limits
where they become simple and solvable.

No parameter of the theory can be dialed to a
simplifying limit.



WHY ARE WE HERE? CONFORMAL FIELD THEORIES ARE HARD

In presence of a symmetry there can be sectors of the theory

where anomalous dimension and OPE coefficients simplify.




THE IDEA

Study subsectors of the theory with fixed quantum number Q.

In each sector, a large
in a perturbative ex
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NOT AN ORIGINAL IDEA

ATOMICTHEORY




NO BOOTSTRAP HERE!

This approach is orthogonal to
bootstrap.

We will use an effective action.

We will access sectors that are difficult
to reach with bootstrap.

(However, arXiv:1710.11161).



https://arxiv.org/abs/1710.11161

CONCLUSIONS

We consider the O(N) vector model in three dimensions. In the IR it flows to a
conformal fixed point [Wilson & Fisher].

We find an explicit formula for the dimension of the lowest primary at fixed
charge:

_ C€3/2 1372 172 -1/2
Ag = Zﬁo +2y/Acq Q"2 -0.094 + 0(Q"72)
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CONCLUSIONS: 0(2)
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SCALES

We want to write a Wilsonian effective action.




SCALES

We want to write a Wilsonian effective action.




SCALES

* We look at a finite box of typical length R
® The U(1) charge Q fixes a second scale p1/2 ~QV?/Rr

12 Q12

<Auyv

Q| =

o

For A <« p“ . tﬁe effective action is weakly coupled and
under perturbative control in powers of p™'.



NON-LINEAR SIGMA MODEL

In a generic theory™, picking the lowest state of fixed charge induces a
spontaneous symmetry breaking.
The low-energy physics is described by a Goldstone field x.

Using conformal invariance, the most general action must take the form
LIX] = k3/2 @ux*x)¥2 + kyaR@,xMx) 12 + ...

These are the leading terms in the expansion around the classical solution
X = pt. All other terms are suppressed by powers of 1/Q.

'$)



NON-LINEAR SIGMA MODEL

The energy of the lowest state for this action has the form

E=—££Q + Rc \/VQ TP o00c

The leading quantum effect is the Casimir energy of the conformal Goldstone.

1 112
Eg = ——C((-5|S°) =-0.0937...
6~ 52

This is the unique contribution of order QP.
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STATE-OPERATOR CORRESPONDENCE

The anomalous dimension on R is the energy in the cylinder frame.

Rrd
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Protected by conformal invariance: a well-defined quantity.



100 GOOD TO BE TRUE"
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700 GOOD TO BE TRUE?

Think of Regge trajectories.

The prediction of the theory is

M?, GeV?

m? o J(1+0(s7))

but experimentally everything
works so well at small J that String
Theory was invented.
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WHAT HAPPENED?

We started from a CFT.
There is no mass gap, there are no particles, there is no Lagrangian.

We picked a sector.
In this sector the physics is described by a semiclassical configuration plus
massless fluctuations.

The full theory has no small parameters but we can study this sector with a
simple effective field theory (EFT).

We are in a strongly coupled regime but we can compute physical observables
using perturbation theory.

» would you like to know more?



TODAY'S TALK

The EFT a non-relativistic conformal field theory

* An EFT for a CFT.
® Experimental realization (ultracold atoms, unnuclear physics).

* Comparison with experiment.






NON-RELATIVISTIC CFT




THE SCHRODINGER GROUP

The Schrédinger group describes the symmetries of the free-particle
Schédinger equation

_ A

'3t 2

Its algebra contains the Galileian algebra, plus a central extension and two
more generators that, together with time translations form an SL(2, R) algebra.

Contraction of the conformal group, just like the Galileian group is a
contraction of the Poincaré group.

It is the symmetry of a non-relativistic conformal field theory.
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ATOMS AT CRITICALITY
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UNNUCLEAR PHYSICS

Neutrons have a large negative scattering length a = -19 fm compared to the

effective range of the interaction rg = 2.8fm.
There is a range of energies in which a system of neutrons behaves as a

composite object, controlled by a NRCFT.
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A LARGE-CHARGE EFT: THE INVARIANT OBJECTS

The physics in a sector of fixed charge is described by a Goldstone field n.
Start from a Schrédinger-invariant object

1
U=0x- EaiXaiX

In the fixed-charge vacuum x = pt + n, where p is an increasing function of Q
If we add a background U(1) field Ag

1
U =0:x-Ag - 59iX0iX
and a new Schédinger-invariant operator appears:
1 2
Z=AAg - §(AX)

Now we want to write the most general Elzwith these operators.
)



A LARGE-CHARGE EFT: SCALING DIMENSIONS

The most general operator in the EFT is

O(n:m) = (9; U>2mzn U5/2—(3m+2n)
I

where m and n are integers to have a local action.

Time and space scale differently. The dynamical exponentis z = 2

[0;]1=1 [0;]=2z=2
and

[Uyj=2 [Z]=4
and all in all,

[dtd3x] =-5 [O] = 5.



A LARGE-CHARGE EFT: Q-DIMENSION

We have an infinite number of operators. We need an ordering principle.

In pion physics it would be the number of derivatives.

Here the system has no intrinsic scales. We use the scale induced by the fixed
charge: p. On the ground state x = pt, so

[0M™M], =4-2(m+n)

The leading action is for m = n = 0:

1 5/2
L =coU>? = ¢ (atX' Ao - EaiXaIX)
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PHYSICAL OBSERVABLES

What do people measure?

In the case of ultracold Fermi gas, there is a system of atoms confined in a

(laser) harmonic trap.

The quantities of interest:
® energy of the system

® fluctuation spectrum over the ground state

We need to add a background harmonic potential




PHYSICAL OBSERVABLES

What do people measure?

In nuclear experiments: consider a reaction

Ay +A, = B+n+n+---+n
N—— —
Q

The energy spectrum of B is continuous, with some maximal value Eq and the
cross-section around E( has the form

do -
(E - Eg)2(Q)-5/2

—_~

dE
where A(Q) is the conformal dimension of the unnucleus operator Oq that
describes the neutrons:

B(t) 2
(Oq (t,x)0q (0,0)) tA(—Q)e ix“/(2t)

O



STATE-OPERATOR CORRESPONDENCE

State operator correspondence in CFT: operators inserted in RY are mapped to
states on R x %1, The conformal dimension maps to energy.

In NRCFT there is a similar story.

o tors in RY |:> states on RY with a background
erators in
. harmonic potential.

To compute A(Q) we add a background field and compute the energy.
It is the same problem! {)



INHOMOGENEITY: THE CLOUD

The harmonic trap breaks translation invariance.
The ground state configuration is not homogeneous, but it's a cloud.

The density at the edge goes to zero

The EFT is valid in the bulk, but broken at the edge.

[§)



EDGE OPERATORS AND NLO ACTION

We need to add more terms to the EFT. Invariant quantity localized at the edge
2, =ZP8(U)(@;U)7P)3

this has dimension

5-2p
[ZP]P=T

The first contribution appears at NNLO.
The NLO action is

2
= cnlU52 VU) 1/2 2 2
L—COU +C1w+C2U [(AX) —3(V®VX) :|
where cg, cq and ¢, are Wilson coefficients.

The controlling parameter is w/p. {)



ENERGY OF THE CLOUD

Energy of the ground state

3/4
EQ) _ p@) = 361243 _3213 /3025, 023 + o(a%”)
w

4

§ is the Bertsch parameter, depending on cg.

Wilsonian parameters from lattice simulations

50
vv¥ AFMC, DMC Carlson and Gandolfi (2014)
A GFMC Chan d Bertsch (2007)
401 L] ECG Yin and Blume (2015)
L] LATTICE Endres et al (2011)
-_ LO
30r x

NLO*

Aqg(Q)

201

Q

20

£ =0.372(5)
¢q =-0.0537(2)
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FLUCTUATIONS

The fluctuations about the ground state are described by a Goldstone.
For Ag = 0, the Schrédinger symmetry fixes the dispersion relation

_ . /2¢
90 = 3OI

The confining potential changes the story.
* No plane waves

¢ Discrete spectrum



WHAT T0 COMPUTE?

* The response function, i.e. the propagator for the density fluctuations
X(X1, X2t -t2) = (8p(x1,11)8p(x2, t2))7

® Fourier transform on time and relative position x4 - x,. Integrate over the
position of the center of mass xq + x5.
By the fluctuation-dissipation theorem, the imaginary part is the dynamic
structure factor

1
S(do, @) = -~Im(x(qp, @)

For a translation-invariant system

2
S(qp,q) = 5(% - ?PQ)

We define the dispersion relation is the curve along whict)S(qo, q) is peaked.



DYNAMIC STRUCTURE FACTOR

Alternatively, from Fermi's Golden Rule

S(do. @) = Y [(0[8p(n)|n)[>8(qg - E(n))

Measured experimentally with Bragg spectroscopy

w/wr

Is it concave or convex?
H. Biss et al, PRL 128, 100401 (2022)
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FLUCTUATIONS

Fluctuations at NLO are controlled by the action

5 .
Lin] = -gco Vi -V2( -V)(Vn)? - 3i?)

(V)2 .\ YV - Vil .\ (VV)2 (2(p - V) (Vm)? + 302)
V-V 2(u- V)32 8(u-V)%/2
+ ¢ /p-V((AMZ -3(V & Vm)?) .

+C1[

To find an approximate solution we use a WKB expansion

nt, x) = eiqotn(r)YgIm (6, ),
i

SSO(U) +S1 (u) + ISSZ(U) T 6283(u) TP oo ] o

n(u) = exp

where O is a new small parameter.

O



FLUCTUATIONS

* The confining potential introduces a scale w.

* The charge introduces another scale y, and then there is the
* Energy of the fluctuations q.

Two dimensionless parameters

n= 9 controlling the EFT,
M
5=2 controlling the WKB expansion.
d0
low energy linear zone high energy
(Lo EFT) (Lo WkB)
C
fluctuation
energy qo Vo "

[§)



LINEAR REGIME

In the linear regime we use LO EFT and LO WKB (physical optics
approximation).

Y dw
sin \/§q—°J —)
w -
(=D ( 0 \/1-V(w)

uy/ 1 —\_/(u)

Regularity at the cloud edge V(u) =1 gives the quantization condition for qg
(spectrum)

1
@\/gj CI—W=nn, ne€Z.
w

0 \/1-V(w)



HIGH ENERGY REGIME

NLO EFT and LO WKB

u B 2 4
so=:\/§I dw;(n 2 _C123¢ 90, o0,

= - 2 4
w 1oV |\ 20 -V H W
81=k1—|og(u\/1—\_/)+$qo+O(q0)

5co(1-V)2 p? u

° ‘I/pz correction

* The edge position changes and with it the spectrum

U1 _
\/quj d 1 (1+ 2 ¢1-3¢c; 9
w 5
1 (w)

0 5¢p (1-V(w))2 p?



LOW ENERGY REGIME

LO EFT and NLO WKB

sin q_oﬁju dw w 1 J“ Fe[V(w)] dw )

n(u) =D AR w4 V1-Vow)
u\/(1+ 2 Fo(V )(1-\'/<u>>

and the spectrum is

1 1 Y
ﬂﬁj dw + & 1 J Fy[Vw)] dw=nn, n=1,23,...
0

@ J1-vewy ©4v3Jo /1 G

where

2£(£+1)

F,[V(u)] =92V (u) + gau\_/w) -
U

(1-V(u)) .



DYNAMIC STRUCTURE FACTOR

S(qo. @) = ¥ |{0|8p(n)|n)|28(qq - E(n))
n

In terms of the field

15¢ /. -9
op = Top“z 1 —Vﬁn(t,u)

In the physical optics approximation

1/4 1
(OBp(@In) LY 2T j

dusin(qR¢u) sin (
0

We solve the integral with a saddle point approximation for & < 1



HIGH ENERGY REGIME

The saddle equation is
1 -
qRe = 5 9y Sp (U)
and we can approximate

.2 - nnw
— sin? (R 1)8(qp - 222) N
3250 ()| 00 =205,

2
2 Co d0
(A)qz n

S(qo, @) = p"/

At leading order, the saddle condition is

q= i v3 = & Y0
V2 [T \ 2u-vn)

This reproduces the local density approximation in condensed matter. physics.
)




DISPERSION RELATION

The dispersion relation is the curve along which S(qg, q) has a peak.

nnw

2
© q -
0 90 Slnz(quU)S(qo—m)
q

wq? § aﬁso(l])’

S(qq, q) ~ u1’2 ‘
(9p.9) = H _%0 5 5 @)
2n u<0

W

Plugging in the WKB result

the peaks correspond to the stationary points of V (the center of the trap).



DISPERSION RELATION

Plug everything in.
The saddle-point equation is

2
9o 3 2 q0 do 4
=——8500)=4/=—qop |1+ =—(cq-3c)—=+0()" ],
250 \/2“ o( 5, (¢1732) 2 y

and the dynamic structure factor is peaked along the curve

2u 4 c1—3c2q2
=/Eql1-—-1—==21 |,
b 3q( 15 ¢p p

In the high energy regime the concavity does not depend on the potential but
only on the Wilson parameters.

[§)



LOW ENERGY REGIME

The expectation value of the density fluctuations localizes around the curve

e (8?V(r) +3

arV(r))
Q% r

The peaks of the dynamic structure factor appear at the roots of the equation

|z g (o) | o

Here the shape of the potential is crucial



LOW ENERGY REGIME

For the harmonic potential

2y ( w? )
qQo=1/Eq1-2+...
3 q?p

the leading correction is concave.

For a superharmonic potential V = r2K, the correction becomes smaller

v w2k
3 g2k

Was to be expected: the flatter the potential, the closer we get to the flat box

where there are no 1/q corrections.

[§)



FINAL RESULT
i

high energy

®* Numerical evaluation of

linear regime

qo/@

the integral for V = r? and
V=r6,
® The red line is the saddle

® Discrete spectrum

-
low energy

D a/N@ 30 a/N@ :

AT ® The flatter the potential,
1 the more peaked the
function




BACK TO THE EXPERIMENT

® Experimental measure on

the Fermi gas for V = r1¢.

w/wp

® Seems concave in the
low-energy regime.




CONCLUSIONS

® With the large-charge approach we can study strongly-coupled systems
perturbatively.

* Select a sector and we write a controllable effective theory.

* The strongly-coupled physics is (for the most part) subsumed in a
semiclassical state.

® Precise and testable predictions.

* Remarkable agreement with lattice and experiment.
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