The Resurgence of the Large Charge expansion

Domenico Orlando
INFN | Torino

YITP | 10 January 2025

arXiv:2102.12488, and to appear



https://arxiv.org/abs/\textbf {2102.12488}

WHAT HAPPENED?

We started from a conformal field theory (CFT).

There is no mass gap, there are no particles, there is no Lagrangian.

We picked a sector.
In this sector the physics is described by a semiclassical configuration plus
massless fluctuations.

The full theory has no small parameters but we can study this sector with a
simple effective field theory (EFT).

We are in a strongly coupled regime but we can compute physical observables
using perturbation theory.
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TODAY'S TALK
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Justify and prove all these claims from first principles
* well-defined asymptotic expansion (in the technical sense)
® justify why the expansion works at small charge

® compute the coefficients in the effective action in large-N
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TODAY'S TALK

Justify and prove all these claims from first principles

Use resurgence for the large-charge EFT

* Borel resum the double-scaling Q — e, N — oo limit
® geometric interpretation of non-perturbative effects

* general structure of the corrections in the EFT
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LARGE N VS. LARGE CHARGE




THE MODEL

¢@* model on R x = for N complex fields
N pv * * u * 2
Seleil =Y | dtdz [9 (Bui) (Buepi) + @i i + 5 (i i) ]
i=1

It flows to the WF in the IR limit u — o when ris fine-tuned.
We compute the partition function at fixed charge

N
2(01, ...,QN) = Tr[e'BH |_| 8(él _Qi)]
i=1

where
Q = I dzjp =i J d> [CP:CPi "-P?CPi]-
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FIX THE CHARGE

Explicitly

[

_|-||

N :Z

JR(ce! Tr[e—BH H o6 o} ]
i=1

Since Q depends on the momenta, the integration is not trivial but well
understood.

n
Z5(Q) = J %e-.eo J. Dp; eI
-n
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FIX THE CHARGE

Explicitly

[

_|-||

N :Z

JR(ce! Tr[e—BH H o6 o} ]
i=1

Since Q depends on the momenta, the integration is not trivial but well
understood.

"dB _isa J'

Zs(Q) = J e . e S[p]
L
@(2nR)=e®p(0)
n

q 2n
P(2nP)=¢(0)
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EFFECTIVE ACTION: COVARIANT DERIVATIVE

N
* R * *
Pre1=Y I dtd> ((DpCPi) (DHepy) + g Pi Pi T 2u(Q; cPi)z)
i=1
.0
Dop =00 +ige
Di¢ =0;p
Stratonovich transformation
N . * . N
SQ = Z [—iGiQi + J dtd> |:(DLI(PI) (DIp(PI) + (r+?\)cpi (PI:|]
i=1
Expand around the VEV
1 2 2
@; = —=A +u;, A=m* +A

V2
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EFFECTIVE ACTION FOR A

We can now integrate out the u; and get an effective action for A alone

SolA] = % [VB(Z—i + m2)A2—i2 +Tr[log(-D},D}, + m? +$\)]].
i=1

Non-local action for A.
To be expanded order-by-orderin 1/N.
We can identify the functional determinant with the grand-canonical (fixed

chemical potential) free energy:

Fae(i0) = E
efe ]

2 2 o
2 V(S—'2 + mZ)AT' + %Tr[log(—D'pD'H +m2)]].

[$)



ZETA FUNCTIONS

In the limit B — o (zero temperature), we regularize with a zeta function
Q(s|2,m) = Zp(E(p)2 +m?)s:

The gap equations are (set Ay =v, A, =0):

5 ,2.N-1 B
% Ve + 2 C(1/2|2, m) = O,
5 .2V,

8—9. iQ+ BeV —0,

5, 2, 0%\ _
aZVB(m +B—2)V—O,

For finite Q we need necessarily v # 0 and then 6 = imf. So we get

m{(1/2[5, m) = _9

N-1
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ORDER N

At leading order in N, the free energy is

FQ) = - (ieQ+N 2612

—_— -1/2|Z,
B ds 2/nl(s) BG(s-1/22,m)

ol

Using the gap equations

F(Q) = mQ + N((-1/2|Z, m)

Fors = S? at large Q/N:

N\/E(Q)3/2+ N (0)1/2 7N (Q>—1/2

F(Q) =——(= —(<=) - =
3 \N 3v2\N 180v2\N
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SMALL Q/N

The zeta function can be expanded in perturbatively in small Q/N.
Result:
16 (n? -12) Q2

3n4N?2

* Expansion of a closed expression
® Start with the engineering dimension 1/2

® Reproduce an infinite number of diagrams from a fixed-charge one-loop

calculation
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FSZ @ (%)3/2 N( )1/2
—No(%) " semmla) rolVe™)




ORDER N

-3/2
'907210(%) +O(e_ QKZN))




FINAL RESULT
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FINAL RESULT
AQ) = (% +o(N%)) ‘-

e T

1/2
s/we separate to,
see the Goldstones!

Q

_—_" - s ol
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FERMIONS AT LARGE N




GROSS—NEVEU AND NAMBU—JONA—LASINIO

Simplest four-Fermi models

Sonlwl = Jdtdi > Wiy o,y (ww)
i= ’I

SnuLly, @] = jdtdz > wiv' oy [(w> (CPYsLP)z]

Respectively O(4N) and U(N) x U(1) symmetry.
Non-trivial CFT in the ultraviolet (UV).
Convenient to introduce collective fields

Q
Il
€

=

6
Il
2l Z|«

Y+ o0 y)

€



GNY AND NJL MODELS AT LARGE N

N
- 1
i=1 Y

N
SnuLLW. ] = Jdtdi > Wiy ot () + o (2) ] wi+ ;—Yapcp* 3,
i=1

They flow in the IR to the same CFTs.
We want to fix U(1) charges.

Yi — e’ Wi
p — ey, @ — e,

and compute the partition function at fixed charge

Z(Q) = Tr[e'BHS(é— Q%/

)



FIX THE CHARGE

" d® _iea Tr[e—BH JuTCle! ]
2n

-n

Z5(Q) = I
At large N the integral over 6 becomes a Legendre transform
1 .
I log(Zs2 (Q)) = s%per - Seff(0))
!

The trace is written as a path integral in two ways:

AQ) =

Zs (Q)

o M
@e_ieo J DCPI e‘s[‘P]
2n

v-n
p(2nB)=-ey(0)
P(2nB)=e?°p(0)

_[" 98 6 I

-9
Dep: e
2|_| (PI

J-n

w(2nB)=-y(0)

cp<2@>=cp<0>



EFFECTIVE ACTION: COVARIANT DERIVATIVE

The actions are quadratic in the fermions. We can integrate them out. For the
bosonic fields, we expand as vacuum expectation value (VEV) plus fluctuations

1 .
o=0g+—
" UN

= +—A

Po = Po \/NCP

The leading contribution comes from the VEV:
.0
Q=S¢ =-NTrlog yPap - IEYB +0p
.0
Q=S = -NTrlog(Y“a u-igYaYs + @ (552) + 20 (TY))

This has to be minimized with respect to oy and ¢ (gap equation).
We canread ib/f =pasa che@cal potential.



THE NAMBU—JONA-LASINIO MODEL

In the B — o limit, on the torus 2 = T2, the grand potential is

%=-J(2 )2[\/(|p + 2 +|ol2 +1/(Ipl - u>2+!cpo|2]

(2 - 2|p|?)y/|p|? + u2]

= 6l [3|cp]2p arctanh

+
\/ |<P|2+u2

10F 1
— u=0
st 1 — p=1
— =2
0’\/\/—
st g
— 1

5
ol
~



THE NAMBU—JONA-LASINIO MODEL

The gap equation admits a non-

10 1 . . .
, vanishing solution for any value
e
3t 1 —u-1 of p
— u=2
or 4
]S ]
= = 0 | >

¢Pg =M K%-1 =0.6627 ---xp

This is the physics that we had discussed before: fixing the charge induces a
spontaneous symmetry breaking.

The field ¢ is the order parameter for the superfluid phase transition.

[§)



COOPER PAIRS

The scalar ¢ can be understood as a composite field
—m D
P=YY+Hyy y
Its meaning is even more transparent after a Pauli-Glrsey transformation:

[ -vw-(1+v)CHT], G 2 (80 +vs) -wTC -vs)].

(41
A5

Y —
because then we identify ¢p with a Cooper pair

¢ =y'Cy

In presence of an attractive interactions, fermion form
pairs that behave as bosons and undergo a Bose—
Einstein transition. ()



CONFORMAL DIMENSIONS

Now we can repeat the computation on 52.
By the state-operator correspondence, the free energy is the conformal

dimension of the lowest operator.

N & .
Q=-—F3 3 Q2+ D(Q +Q.), Q. = [pf? + (wj £ )2,
anrg =172

where w; = j + 1/2 are the eigenvalues on the sphere.
We need to minimize with respect to ¢ and Legendre transform from the
chemical potential p to the charge Q.

Two regimes:
* The large-charge regime Q > N,

® The small-charge regime Q < N
)



LARGE CHARGE

We need to regularize the sums (ask). The grand potential has two pieces:

Q, = -%(rop)3 (3(K(2) - 1) arccoth kg + 3kg - 2K8 + 2(K% -1 )3/2) SR

4(Poro)® | Poro 1
Q=N + = + ... .
d ( 3 3 60gppr,

In the large-charge regime we look for a solution of the form

cp0r0=,/|<(2)—1 (prO+KT1+ <2 +)
2l

(Wo)3

After some algebra we can solve the gap equation order-by-order

Ko tanhkg = 1 K =_L = =33'16K%
0 o= T2 2" 144048
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SMALL CHARGE

In the small charge regime, we need again to separate the regular from the

divergent part:

Qr =-2N Z B[\/(€+%+pr0)2 + (cpol’o)z + \/(6—%—Qr0)2 + ((p0r0)2
=1

- \/<4+ %>2 + (qoro)? + \/(ﬁ— %)2 + (poro)? |,

Qd = -4N Z (€+ %)\/(£+ %)2 ar ((Poro)z.
/=1

The divergent part can be understood in terms of zeta functions (ask)

O



SMALL CHARGE

Now we expand around p = 1/(2rg) in powers of p.
This is the conformal coupling to a cylinder in three dimensions.

u=1/2rg) + pch(z)ro + p4cp61r8 = o000

With some algebra

2N 2

Lol (g)z

2N/ p2 \2N
Consistent with the fact that ¢ has charge two and dimension 1/2, so that
A(Q) = Q/2.

[§)



ORDER N°

In the EFT we had a universal term. Is it really universal?
Here it can only appear at order 1/N, so we need to compute the fluctuations
around the vacuum. The fermion propagator is

Dy (P) = (-iP+ g - ul3Ts)™".

The fluctuations for the scalars are obtained with a one-loop fermion
computation. For example the real part of ¢ interacts with itself via

K, p, ®o

g 0
]IQ]I =D'1(P)=—J.—Tr[Dw(K)Dw(P-K)],
N— (2n)?

P—K,—p, -

O



ORDER N°: THE UNIVERSAL GOLDSTONE

The final result for the two real components is

KoM 2K% (2K(2)—1 )002+(3K8—2K8—2Kg+2)p2

52w
- 3 ((rd2
D'y = " i G- o, | ro®dnd,
K0 oo 2Kgw* +Kgp
2n 8n(|<%—1)|,|

and from here we read the dispersion relations for a massive and for the
universal Goldstone mode

2_ 12
Wy = =p° +...
1 2P
2 6 4 2
K§ -1 5kg - 5kg -k§ + 2
oo%=’|2|<6 0 2y 2 0-"0 S

ZK% -1 ZK%(ZK% -1

[§)



WHAT HAS HAPPENED?

* We have taken a model in which the fixed point is under large-N control

Fixing the charge results in spontaneous symmetry breaking

The order parameter is a composite field (Cooper pair)

® We compute the conformal dimension of the lowest operator of charge Q

We find a result in total agreement with the general EFT constructio




THE GROSS—NEVEU—YUKAWA MODEL

Now for the Gross-Neveu-Yukawa model.
Integrating out the Matsubara frequencies we find

Q_ d’p 1 -Bwp+h)
N——zjm{wp‘FEIOg(‘l‘Fe P )+(|JH—}J)},

with oog = p2 + 0(2). The gap equation is
og - % Iog((1 + Pty (1 4 eB(Co-W)) =0

and admits only the solution oy = 0.

In other words, in the large-N limit the symmetry is never broken.
This is different from the superfluid EFT behavior.

O



THE GROSS—NEVEU—YUKAWA MODEL

We can repeat the computation on the sphere. The grand potential is

Z|0

1 . :
> Y Qi+ Dwj+p Yy (2j+1)

2I'II‘0 ®j>lJ ooJ-<|,|

the solution to the gap equation and the Legendre transform are

o

Z|lm

1 1

N = 5oz ol (Luro + 1), 3 Mo (lbro | + D 2prg | +1).
N 2nr§ énrg

This is the physics of a Fermi sphere.

However, the behavior of the conformal dimension is still the same

+

192

2/ Q 3/2
) o

=5l l(Q)w‘ : (Q)_”z*

12\ 2N

[§)



WHAT HAS HAPPENED?

* We have taken a model in which the fixed point is under large-N control

Fixing the charge does not result in spontaneous symmetry breaking

The physics is the one of a Fermi sphere

The dimension of the lowest operator still obeys the same law

Conundrum: is this a large-N effect or is there a finite-N transition?




RESURGENCE AND THE LARGE CHARGE




RESULTS FROM LARGE N

O(2N) at criticality in 1 + 2 dimensions on R x 3. Double-scaling limit N — oo,
Q — « with § = Q/(2N) fixed.

F¥ (Q) = pQ + N(-3[5, ),
NG HANEESS



RESULTS FROM LARGE N
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{(s|3, p) is the zeta function for the operator -A + u?. In Mellin representation
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RESULTS FROM LARGE N

O(2N) at criticality in 1 + 2 dimensions on R x 3. Double-scaling limit N — oo,
Q — o« with § = Q/(2N) fixed.
The free energy per DOF f(§) = F/(2N) is

. . 1
f(q) = sup(pg - w(p)), w(p) = -§C<-%IZ, M),
v}

{(s|3, p) is the zeta function for the operator -A + u?. In Mellin representation

_ 1 a ﬁ s -t At
Q(s|z, p) = o) IO : tSe Tr(e )

Large g is large p and is small t. The classical Seeley-de Witt problem:

Tr(em> = %(1 + %t+ )



THE TORUS

As a warm-up: 2 = 2.
§ 2 2
spec(A) = {—L—Z(k1 + kz) | kq, ko € Z}.

It follows that the heat kernel trace is the square of a theta function:

4n2 2 2 4n2t
-—— (k7 +k5)t -
Tr(eAt>= Z e 1212 2 05(0,e 2y .
k1,k2€Z

We are interested in the small-t limit: we Poisson-resum the series:
2,2\ 12 2 2,2
L _kfL% L L
Tr(em>=|: (1+ z e 4 ):| =4—(‘I+ Z &
V 4|'|t kez, nt kEZz

O




THE TORUS

Grand potential

W) =-=C(-z[T*, ) = —[1+ 1+ .
W) =585l =T % k|2 p2L2 [[k[[pL

Free energy

) ) I oIkl v/3ma
£(§) = sup(ug - w(p)) = 1 1-Y& — 4.
D = sup(Hg - () = 574 % 8123

® perturbative expansion in p (here a single term) plus exponentially
suppressed terms controlled by the dimensionless parameter pL

* the free energy is written as a double expansion in the two parameters 1/§
and e" V419,

® non-perturbative effects more important than the “usual” instantons (’)(e’

O

O



THE SPHERE

On the two sphere spec(A) = {-£(¢ + 1) | € Ny } with multiplicity 2¢ + 1.

Again, we use Poisson resummation

n+’I 1-2n
(1 2 ) antn

Tr<eAt>e-t/4 — Z (20 + 1)e-(£+1/2)2t % g

|
>0 n:

The series is asymptotic: the Seeley-de Witt coefficients diverge like n!:

_q\n+1 .4 _51-2n 1/2
-1) (1-2 )B2n N 2n "
n! n°/2+2n

an =

this divergence is reflected in the existence of non-perturbative corrections.

O



BOREL RESUMMATION




BOREL TRANSFORM

We need to make sense of the divergent series and the imaginary terms.




LATERAL TRANSFORM

If there are poles on the real positive axis there is an ambiguity

s

&% —

s, (H)(t) = s(H) (1) = I wP e i ew® ) AW
C. b

sy (H)-s_(H) = (2ni)Zresidue
k

We need an independent definition of the non-perturbative effects to cancel
the imaginary ambiguity.

O



MORE INGREDIENTS




WORLDLINE INTERPRETATION

We need a non-perturbative interpretation of these exponential terms.

We read the heat kernel as the partition function of a particle at inverse
temperature t and Hamiltonian H = —8(2) - A, i.e. a free quantum particle moving
onR x 2.

We can write the partition function as a path integral

Tr(e(agJ'A)t) =N I DX e-S[X]
X(1)=X(0)

where the action is

_1 H oV
S[X] = EIO dTngX (T)X (T)



A TRANSSERIES FROM GEODESICS

In the limit t — O the path integral localizes on a sum over all the closed
geodesics y.

2
For each geodesic a perturbative series in t, weighted by e™(Y) e
Tr(e(ag"LA)t) =N J DX e>X]
X(1)=X(0)

[><] _M B [~<]
=tPo Y a0+ > e @ Py Y alYt",
n=0 y € closed geodesics n=0

the b, depend on the geometry.

This is precisely the same structure predicted by resurgence.

Now we have a geometric interpretation.

O



THE TORUS

In the case of the torus, closed geodesics are labelled by two integers (kq, ko)
S

The length of the geodesicis £(kq, ky) = L\/k% + k3.

The integral is quadratic and the fluctuations around each geodesic give the
usual

N Dhe i Jg drh)2+(h)? =/\/det(132>_1 -
4t T 4nt
h(1)=h(0)=0

O



THE TORUS

Now we can write the result of the path integral

Tr(em> =N J DX e SX] = A2 Z e S[Xc1-S[h]

X
X(1)=X(0) “h(1)=h(0)=0
L2 (kK +k3)
= N2 z e 4 J Dhe's[h],

2
kez h(1)=h(0)=0

L2 _L2)jk)2
=— |1+ z e 4
kez?

This is exactly what we had found before just by looking at the spectrum.
Now we can understand the non-perturbative effects in terms of closed
geodesics.

O



THE SPHERE

Closed geodesics on the sphere go around the equator k times
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We need to sum over the fluctuations h, and hg
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There is a zero mode because we can rotate the equator



THE SPHERE

Closed geodesics on the sphere go around the equator k times

We need to sum over the fluctuations h, and hg

There is a zero mode because we can rotate the equator

And an instability because we can slide off



BACK TO RESURGENCE

Putting it all together, the non-trivial geodesics give

k2n2

372 )
12.(¥) S kle

kez

The one-loop result perfectly cancels the imaginary ambiguity of the Borel sum!

2 2

1 3/2 k“n
Tr(e(A_Zﬁ) =s.M®F2(7) Y Drke T =Rels.(H)®)]
>



BACK TO RESURGENCE

We can write the exact expression for the grand potential (m? = p2 +1/4):

2 poo 2 - 1/2 3/2
o) = Re [Zrm J dy K2(2mry)] _r- 3 m 2ir’"m 2nrm,
0

ysin(y) 3 _ﬁ*—' . (4n)3/2




BACK TO RESURGENCE

We can write the exact expression for the grand potential (m? = p2 +1/4):

£ 1/23/2
2ir “m -2nrm

2rm? °°d Ko (2mry) =£ s.m,.er mo
0 3 24 (4n)3/2

w(p) =Re [ : m°-—+
ysin(y)

As a numerical test, we can compare with the convergent small-charge
expansion (g = 0.6)

=0.012777 296 63...

roo(mr =0.4)
small charge

=0.012777 297 69...

resurgence

reo(mr = 0.4)




OPTIMAL TRUNCATION




LESSONS FROM LARGE N

Let's go back to the EFT.
The effective action is identified with the asymptotic expansion: the grand
potential is the value of the action at the minimum x = put:

w(y) = LEFT'
X=Ht
where
3/2 1/2
LEET = @0 <apxa”x) + w4 <8px8“x) + ...,

In general the coefficients are unknown
BUT

Now we have a geometric understanding of the non-perturbative effects

O



LESSONS FROM LARGE N

Assume:
1. the large-charge expansion is asymptotic;

2. the leading pole in the Borel plane is
a particle of mass p going around the equator.

A CFT has no intrinsic scales.

The only dimensionful parameter is due to the fixed charge density.

The conformal dimension is a transseries

0
AQ) =Q¥2 Y f§,°>$+c1 QPre3mVa 5 Ly
n>0 n>0 Q

(we used p = 3fVQ/2 +....)



LESSONS FROM LARGE N

Assume:
1. the large-charge expansion is asymptotic;

2. the leading pole in the Borel plane is
a particle of mass p going around the equator.

A CFT has no intrinsic scales.

The only dimensionful parameter is due to the fixed charge density.

The conformal dimension is a transsem

+C Qb1 -3I1Kfé)>\/_ Z (1) 1 + .

AQ)=Q%2 Y f<0> - o

n>0 n>0

(we used p = 3f60) VQ/2 +....)



LESSONS FROM LARGE N

® The controlling parameter for the non-perturbative effects e
fixed by the leading term in the 1/Q expansion.

(0)
-3nkf;

—3an60> V(o) g

® The non-perturbative coefficient e VO fixes the large-n behavior of

the perturbative series fﬁ,o).
fO ~ (2n)1(3nkf)™

We don’t know enough for a Borel resummation, but we can estimate an
optimal trucation (the value of n where f,ﬂo)Q'” is minimal)

N* 3|'|Kf0 Q1/2
2

corresponding to an error of order £(Q) =

0<e‘*/5)



CAN WE UNDERSTAND THE LATTICE RESULTS NOW?

14

12 -

10

g o In0(2), f = 0.301(3)
° soN" =(’)<\/6) and €(Q) =O(e‘”‘/6).
Al
2l MC data —&—
o ‘ fit —
2 4 6 8 10
Q
Lattice: Best fit with N = 3 terms.

AtQ=1theerrorisz6x10'2;atQ=11theerrorisz5><10'5.

Resurgence: V10 = 3.16
e ~4x102ande™ 1T =3x1075. o



WHAT HAS HAPPENED?

® The large-charge expansion of the Wilson-Fisher point is asymptotic

® In the double-scaling limit Q — o0, N — o we control the perturbative
expansion

* We can Borel-resum the expansion

* We have a geometric interpretation for the non-perturbative effects
® We can use this geometric interpretation also in the finite-N case

* We obtain an optimal truncation and estimate of the error

* The results are consistent with lattice simulations



CONCLUSIONS

® With the large-charge approach we can study strongly-coupled systems
perturbatively.

* Select a sector and we write a controllable effective theory.

* The strongly-coupled physics is (for the most part) subsumed in a
semiclassical state.

® Precise and testable predictions.
® Qual(nt)itative control of the non-pertubative effects.
* CFT constraints: perturbative/non-perturbative interplay.

* Remarkable agreement with lattice.




AN EFT FOR A CFT
USE THE SYMMETRY
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THE 0(2) MODEL

The simplest example is the WF point of the O(2) model in three dimensions.

* Non-trivial fixed point of the ¢* action

Lyy =3,® 3,®-u(p ¢)?

Strongly coupled

® |In nature: 4He.

Simplest example of spontaneous symmetry breaking.

Not accessible in perturbation theory. Not accessible in 4 - €. Not
accessible in large N.

® Lattice. Bootstrap.



CHARGE FIXING

We consider a subsector of fixed charge Q.

Generically, the classical solution at fixed charge breaks spontaneously
Ut — 0.

We have one Goldstone boson .



AN ACTION FOR x

Start with two derivatives:
L[x] = fog va.y-c3
Xi= 2 px pX

(x is a Goldstone so it is dimensionless.)



AN ACTION FOR x

Start with two derivatives:
u]—ﬁa 3, x - C3
Xi= 2 px pX

(x is a Goldstone so it is dimensionless.)

We want to describe a CFT: we can dress with a dilaton

-2fc

Haﬂ=m2

-2fo
- e R
= Gfa Gy T(apcapo— ?—2)

The fluctuations of x give the Goldstone for the broken U(1), the fluctuations of
o give the (massive) Goldstone for the broken conformal invariance.



LINEAR SIGMA MODEL

We can put together the two fields as
>=o0+if,x

and rewrite the action in terms of a complex scalar

We get

Lip] =3,¢ @ -ERp @ -u(p @)

Only depends on dimensionless quantities b = fzf,., and u = 3(Cf?)3.

Scale invariance is manifest.
The field ¢ is some complicated function of the original ¢.



CENTRIFUGAL BARRIER

The O(2) symmetry acts as a shift on x.

Fixing the charge is the same as adding a centrifugal term %

Vv

€« o

I 1%



GROUND STATE

We can find a fixed-charge solution of the type

X(t, x) = pt o(t,x) = %Iog(v) = const.,
where
x Q12 4 L
H Q172

The classical energy is

E = c32/VVQ¥2 + ¢ pRVVQY2 + 0(Q7/2)



FLUCTUATIONS

The fluctuations over this ground state are described by two modes.

® A universal “conformal Goldstone”. It comes from the breaking of the U(1).

* The massive dilaton. It controls the magnitude of the quantum fluctuations.
All quantum effects are controled by 1/Q.

2

oo=2p+p—

2y

(This is a heavy fluctuation around the semiclassical state. It has nothing to
do with a light dilaton in the full theory)



NON-LINEAR SIGMA MODEL

Since o is heavy we can integrate it out and write a non-linear sigma
model (NLSM) for x alone.

LIx] = ka2 @ux3"x)%2 + k1 /2R@,x3¥x) 2 + ...
These are the leading terms in the expansion around the classical solution

X = pt.
All other terms are suppressed by powers of 1/Q.

In 3 + 1 NRCFT the analogous story in a background potential Ay leads to
L[X] = C0U5/2 + C4q U_1/2 a,U B,U + Cy U1/2 ((8,8,)()2 = 9aiaiA0) TP o0 (1)

where U = 9;x - Agx - 9;X 9; X/2.



STATE-OPERATOR CORRESPONDENCE

The anomalous dimension on RY is the energy in the cylinder frame.

R x Sd—1

N
e

Protected by conformal invariance: a well-defined quantity.



NRCFT STATE-OPERATOR CORRESPONDENCE

The anomalous dimension on RY is the energy in a harmonic trap.

Protected by conformal invariance: a well-defined quantity.



CONFORMAL DIMENSIONS

now the energy of the ground state.
The leading quantum effect is the Casimir energy of the conformal Goldstone.

1 1c2
Ec = —((-5|S°) =-0.0937...
G 2\/§< 2|

This is the unique contribution of order Q?.

Final result: the conformal dimension of the lowest operator of charge Q in the
O(2) model has the form

C
Aq = =3203%? + 2\/nc,,Q"Y2 - 0.094... + O(Q1/?
Q=37 Vneq o ( )

In 3 + 1 NRCFT we find

1
AQ = Cy/3 Q4/3+C2/302/3+b5/905/9+b1/301/3+b1/9Q1/9—ﬁ |Og<Q)+C0



WHAT HAPPENED?

We started from a CFT.

There is no mass gap, there are no particles, there is no Lagrangian.
We picked a sector.

In this sector the physics is described by a semiclassical configuration plus
massless fluctuations.

The full theory has no small parameters but we can study this sector with a
simple EFT.

We are in a strongly coupled regime but we can compute physical observables
using perturbation theory.



ORDER N°

The order N° terms are

7\v<6+6*))

95,4 = I dtds ((D,8)" (DH&) + (u? + &5 + N7

+ 15 .[ C|X1 dX2 A)\(X1 )7\(X2)D(X1 = X2)2
where D(x -y) is the propagator (D, DM + m?)1.

At low energies we can approximate the non-local term as
3 (12 \ 3 (312
J. dtdXA(x)“C(2|6,2, p) = 5c J dtd>A(x)
M

and we can integrate A out.



ORDER N°

The inverse propagator for o is

1/2(w? + p2 + 4p2) S[)
-Hw 1/2(002 + p2)

It describes a massive mode and a massless mode with dispersion
w2+1p2+...=0 002+8p2+§p2+...=0
2 2
This is the conformal Goldstone that we have seen in the EFT.

Its contribution to the partition function is

Eg = 1lc<1/2|52) =-0.0937...

22

This is universal. Does not depend on N or Q.



HIGHER ORDERS

There are infinite non-local terms
= 1

Soll= z

n=3 n(N _ 1 )n/2—1

At low energy they are approximated by

(o] 1 N
S = ——— | dxA(x)"C
nl n§3 n(N_1)n/2—1 I n

I dxq ... dx, X(x1 )...7\(xn)P(x1 L eens



HIGHER ORDERS

There is only one scale, the charge density p = Q/V. We must have
Cn — p3/2-nCn
So

— N3/2 < C:n 2 n
S, =Q n§3 —n(N— T J. dx A(x)

Infinite corrections of order Q32 (and following), controlled by 1/N.
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