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WHAT HAPPENED?

We started from a conformal field theory (CFT).

There is no mass gap, there are no particles, there is no Lagrangian.

We picked a sector.

In this sector the physics is described by a semiclassical configuration plus

massless fluctuations.

The full theory has no small parameters but we can study this sector with a

simple effective field theory (EFT).

We are in a strongly coupled regime but we can compute physical observables

using perturbation theory.

would you like to know more?
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Justify and prove all these claims from first principles

• well-defined asymptotic expansion (in the technical sense)

• justify why the expansion works at small charge

• compute the coefficients in the effective action in large-N
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TODAY'S TALK

Justify and prove all these claims from first principles

Use resurgence for the large-charge EFT

• Borel resum the double-scalingQ → ∞,N → ∞ limit

• geometric interpretation of non-perturbative effects

• general structure of the corrections in the EFT



LARGE N VS. LARGE CHARGE



THE MODEL
φ4 model on R × Σ for N complex fields

Sθ[φi] =
N

∑
i=1
∫dtdΣ [gμν(∂μφi)*(∂νφi) + rφ*i φi +

u

2(φ*i φi)2]
It flows to the WF in the IR limit u → ∞ when r is fine-tuned.

We compute the partition function at fixed charge

Z(Q1 ,…,QN) = Tr[e–βH N

∏
i=1

δ(Q̂i – Qi)]
where

Q̂i = ∫dΣ j0i = i∫dΣ [φ̇*i φi –φ
*
i φ̇i].



FIX THE CHARGE

Explicitly

Z = ∫
π

–π

N

∏
i=1

dθi
2π

N

∏
i=1

eiθiQi Tr[e–βH N

∏
i=1

e–iθiQ̂i].
Since Q̂ depends on the momenta, the integration is not trivial but well

understood.

ZΣ(Q) = ∫
π

–π

dθ

2π
e–iθQ ∫

φ(2πβ)=eiθφ(0)

Dφi e
–S[φ]

= ∫
π

–π

dθ

2π
e–iθQ ∫

φ(2πβ)=φ(0)

Dφi e
–Sθ[φ]
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EFFECTIVE ACTION: COVARIANT DERIVATIVE

Sθ[φ] =
N

∑
i=1
∫dtdΣ ((Dμφi)*(Dμφi) +

R

8
φ*i φi + 2u(φ*i φi)2)

{D0φ = ∂0φ + i
θ

β
φ

Diφ = ∂iφ

Stratonovich transformation

SQ =
N

∑
i=1

[–iθiQi +∫dtdΣ [(Di
μφi)*(Di

μφi) + (r + λ)φ*i φi]]
Expand around the VEV

φi =
1
√
2
Ai + ui , λ = m2 + λ̂



EFFECTIVE ACTION FOR λ̂

We can now integrate out the ui and get an effective action for λ̂ alone

Sθ[λ̂] =
N

∑
i=1

[Vβ(θ2iβ2 +m2)A2i2 + Tr[log(–Di
μD

i
μ +m2 + λ̂)]].

Non-local action for λ̂.

To be expanded order-by-order in 1/N.

We can identify the functional determinant with the grand-canonical (fixed

chemical potential) free energy:

Fgc(iθ) =
N

∑
i=1

[V(θ2iβ2 +m2)A2i2 +
1

β
Tr[log(–Di

μD
i
μ +m2)]].



ZETA FUNCTIONS
In the limit β→ ∞ (zero temperature), we regularize with a zeta function

ζ(s|Σ,m) = ∑p(E(p)2 +m2)–s :
The gap equations are (set A1 = v, A>1 = 0):

δ

δm
: Vv2 +

N – 1

2
ζ(1/2|Σ,m) = 0,

δ

δθ
: –iQ +

2V

β
θv2 = 0,

δ

δv
: 2Vβ(m2 +

θ2

β2 )v = 0,
For finiteQ we need necessarily v 6= 0 and then θ = imβ. So we get

mζ(1/2|Σ,m) = –
Q

N – 1



ORDER N
At leading order in N, the free energy is

F(Q) = –
1

β(iθQ +N
∂

∂s

Γ(s – 1/2)
2
√
πΓ(s)

βζ(s – 1/2|Σ,m)
∣∣∣∣
s=0

)
Using the gap equations

F(Q) = mQ +Nζ(–1/2|Σ,m)

For Σ = S2 at largeQ/N:

F(Q) = N
√
2

3 (QN)3/2 + N

3
√
2
(QN)1/2 – 7N

180
√
2
(QN)–1/2 +…



SMALL Q/N

The zeta function can be expanded in perturbatively in smallQ/N.

Result:

Δ(Q)
Q

=
1

2
+
4

π2
Q

N
+
16 (π2 – 12)Q2

3π4N2
+…

• Expansion of a closed expression

• Start with the engineering dimension 1/2

• Reproduce an infinite number of diagrams from a fixed-charge one-loop

calculation
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FINAL RESULT

Δ(Q) = (4N3 +O(N0))( Q

2N)3/2 + (N3 +O(N0))( Q

2N)1/2 +…
– 0.0937…

9

FIG. 8. The two leading coefficients c3/2 and c1/2 in the large-charge expansion for the O(N) Wilson-Fisher CFT, shown as a function of N .
The dotted lines show the large-N predictions from Ref. [26]. The dark filled circles show the results of this work. The unfilled squares show
the values of the LECs obtained in Refs. [23, 24] for N = 2, 4. We find that the c3/2 prediction is in excellent agreement with lattice MC for
N � 6. However, the subleading coefficient c1/2, while within ⇠ 3� for N � 6, seems to be in mild tension. Regardless, large-N correctly
predicts the qualitative trends for both couplings.

tice O(2) model. Their model was substantially different from
ours, therefore our results provide an independent verification
of their work. As can be seen in Fig. 8, both the leading and
subleading couplings agree within ⇠ 2�. For N = 4, our
technique is quite similar to the one used in Ref. [24], where
the authors also used a qubit O(4) model. While the agreement
is expected, the qubit model used in Ref. [24] differs slightly
from the one used here. In particular, their model allowed a
bond to ‘turn back on itself’, whereas in our model there are
no such ‘double bonds.’ Since we are working at the criticality,
such details are not expected to matter. This is indeed what we
find. In both these cases (N = 2, 4), our results agree with and
improve over the previous results.

Finally, we remark that the next-higher-order coupling c0 is
predicted to have a precise value from the large-charge expan-
sion. However, being higher order, it is very tricky to extract
from the precision obtained in this work. While it would be
quite satisfying to extract the coupling c0 numerically, in this
work, we simply fixed it to the predicted value and let the other
couplings vary.

V. CONCLUSIONS

To explore the validity of the large-charge expansion for the
O(N) WF CFT, we performed lattice MC computations for the
O(N) model at N = 2, 4, 6, 8. In order to avoid a signal-to-
noise ratio problem as we go to higher charges, we used a qubit
O(N) model, which was shown recently to have a second-
order critical point in universality class of the O(N) WF fixed-
point [28]. This model allows for efficient lattice computations

using a worldline formulation with a worm algorithm, and
allows precise extraction of the conformal dimensions up to
Q = 10 and N = 8.

Having computed the conformal dimensions, we then per-
formed a fit to the prediction from the large-charge EFT and
extracted the two leading LECs c3/2 and c1/2. In line with what
the authors of Refs. [23, 24] observed for the N = 2, 4 models,
we find that the large-charge expansion describes the data very
well even for very small Q for larger N as well. This is an
intriguing fact about the large-charge expansion which would
be nice to understand theoretically.

We finally compared our numerical results for the LECs with
a recent prediction from a combined large-charge and large-N
expansion [26]. We find that the large-N prediction for the
leading coefficient c3/2 agrees very well with the numerical
computations already for N � 6. The qualitative trends for
both the leading LECs c3/2, c1/2 are also predicted correctly by
the large-N expansion. However, there seems to be a small ten-
sion between numerical values and large-N for the subleading
coefficient c1/2. This can be either due to the fact that sublead-
ing coefficient is harder to extract numerically and there might
be unresolved systematics, or it could be that we just need to
go to larger N for the subleading coefficient. The authors of
Ref. [26] also note a small puzzle regarding the c1/2 coupling,
which might be related to this issue. This merits further study
and is left for a future publication.
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[Singh, arXiv:2203.00059]
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FERMIONS AT LARGE N



GROSS–NEVEU AND NAMBU–JONA–LASINIO
Simplest four-Fermi models

SGN[ψ] = ∫dtdΣ
N

∑
i=1

ψ̄iγ
μ ∂μψi –

g

2N
(ψ̄ψ)2

SNJL[ψ,φ] = ∫dtdΣ
N

∑
i=1

ψ̄iγ
μ ∂μψi –

g

N[(ψ̄ψ)2 – (ψ̄γ5ψ)2]
RespectivelyO(4N) and U(N) × U(1) symmetry.
Non-trivial CFT in the ultraviolet (UV).

Convenient to introduce collective fields

σ =
g

N
ψ̄ψ

φ =
g

N(ψ̄ψ + ψ̄γ5ψ)



GNY AND NJL MODELS AT LARGE N

SGNY[ψ,σ] = ∫dtdΣ
N

∑
i=1

ψ̄i (γμ ∂μ+σ)ψi +
1

2gY
∂μσ∂μσ.

SNJL[ψ,φ] = ∫dtdΣ
N

∑
i=1

ψ̄i [γμ ∂μ+φ (1+γ52 ) + φ* (1–γ52 )]ψi +
1

gY
∂μφ

* ∂μφ

They flow in the IR to the same CFTs.

We want to fix U(1) charges.

ψi → eiαψi ,

ψ→ eiαγ5ψ, φ→ e–2iαφ,

and compute the partition function at fixed charge

Z(Q) = Tr[e–βHδ(Q̂ – Q)].



FIX THE CHARGE

ZΣ(Q) = ∫
π

–π

dθ

2π
eiθQ Tr[e–βHe–iθQ̂].

At large N the integral over θ becomes a Legendre transform

Δ(Q) = –
1

β
log(ZS2 (Q)) = sup

iθ

(iθQ – Seff(θ))

The trace is written as a path integral in two ways:

ZΣ(Q) = ∫
π

–π

dθ

2π
e–iθQ ∫

ψ(2πβ)=–e–θψ(0)
φ(2πβ)=e2iθφ(0)

Dφi e
–S[φ]

= ∫
π

–π

dθ

2π
e–iθQ ∫

ψ(2πβ)=–ψ(0)
φ(2πβ)=φ(0)

Dφi e
–Sθ[φ]



EFFECTIVE ACTION: COVARIANT DERIVATIVE
The actions are quadratic in the fermions. We can integrate them out. For the

bosonic fields, we expand as vacuum expectation value (VEV) plus fluctuations

σ = σ0 +
1

√
N
σ̂

φ0 = φ0 +
1

√
N
φ̂

The leading contribution comes from the VEV:

Ω = Seff = –NTr log(γμ∂μ – iθβγ3 + σ0)
Ω = Seff = –NTr log(γμ∂μ – iθβγ3γ5 + φ0 (1+γ52 ) + φ*0 (1–γ52 ))

This has to be minimized with respect to σ0 and φ0 (gap equation).

We can read iθ/β = μ as a chemical potential.



THE NAMBU–JONA–LASINIO MODEL
In the β→ ∞ limit, on the torus Σ = T2 , the grand potential is

Ω

N
= –∫ d2p

(2π)2 [√(|p| + μ)2 + |φ0 |2 +
√

(|p| – μ)2 + |φ0 |2]
= –

1

6π [3|φ|2μarctanh μ√
|φ|2+μ2

+ (μ2 – 2|φ|2)
√
|φ|2 + μ2]
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THE NAMBU–JONA–LASINIO MODEL

-2 -1 0 1 2
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The gap equation admits a non-

vanishing solution for any value

of μ

φ0 = μ

√
κ20 – 1 = 0.6627 · · ·×μ

This is the physics that we had discussed before: fixing the charge induces a

spontaneous symmetry breaking.

The field φ is the order parameter for the superfluid phase transition.



COOPER PAIRS

The scalar φ can be understood as a composite field

φ = ψ̄ψ + ψ̄γ5ψ

Its meaning is even more transparent after a Pauli–Gürsey transformation:

ψ 7→ 1

2 [(1 – γ5)ψ – (1 + γ5)Cψ̄T] , ψ̄ 7→ 1

2 [ψ̄(1 + γ5) –ψTC(1 – γ5)] .
because then we identify φ with a Cooper pair

φ = ψtCψ

In presence of an attractive interactions, fermion form

pairs that behave as bosons and undergo a Bose–

Einstein transition.



CONFORMAL DIMENSIONS
Now we can repeat the computation on S2 .

By the state-operator correspondence, the free energy is the conformal

dimension of the lowest operator.

Ω = –
N

4πr20

∞

∑
j=1/2

(2j + 1)(Ω+ + Ω–), Ω± = |φ|2 + (ωj ± μ)2 ,

where ωj = j + 1/2 are the eigenvalues on the sphere.

We need to minimize with respect to φ and Legendre transform from the

chemical potential μ to the chargeQ.

Two regimes:

• The large-charge regimeQ � N,

• The small-charge regimeQ � N



LARGE CHARGE
We need to regularize the sums (ask). The grand potential has two pieces:

Ωr = –
2N

3
(r0μ)3(3(κ20 – 1) arccoth κ0 + 3κ0 – 2κ30 + 2(κ20 – 1)3/2) +…,

Ωd = N(4(φ0r0)3

3
+
φ0r0
3

–
1

60φ0r0
+…).

In the large-charge regime we look for a solution of the form

φ0r0 =

√
κ20 – 1(μr0 + κ1

μr0
+

κ2

(μr0)3
+…) .

After some algebra we can solve the gap equation order-by-order

κ0 tanh κ0 = 1, κ1 = –
1

12κ20
, κ2 =

33 – 16κ20

1440κ60
, …



ORDER N

F
S2

(Q) = 4N

3 ( Q

2Nκ0 )3/2 + N

3 ( Q

2Nκ0 )1/2
–
11 – 6κ20

360κ20
( Q

2Nκ0 )–1/2 +O(e–√Q/(2N))
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SMALL CHARGE

In the small charge regime, we need again to separate the regular from the

divergent part:

Ωr = –2N ∑
`=1

`[√(` + 1

2
+ μ̂r0)2 + (φ0r0)2 +

√
(` – 1

2
– μ̂r0)2 + (φ0r0)2

–

√
(` + 1

2
)2 + (φ0r0)2 +

√
(` – 1

2
)2 + (φ0r0)2] ,

Ωd = –4N
∞

∑
`=1

(` + 1

2
)
√

(` + 1

2
)2 + (φ0r0)2 .

The divergent part can be understood in terms of zeta functions (ask)



SMALL CHARGE

Now we expand around μ = 1/(2r0) in powers of μ.
This is the conformal coupling to a cylinder in three dimensions.

μ = 1/(2r0) + μ2φ20r0 + μ4φ40r30 +….

With some algebra

Δ(Q)
2N

=
1

2 ( Q

2N) + 2

π2
( Q

2N)2 +…
Consistent with the fact that φ has charge two and dimension 1/2, so that

Δ(Q) ≈ Q/2.



ORDER N°

In the EFT we had a universal term. Is it really universal?

Here it can only appear at order 1/N, so we need to compute the fluctuations

around the vacuum. The fermion propagator is

Dψ(P) = (–i /P + φ0 – μΓ3Γ5)–1 .

The fluctuations for the scalars are obtained with a one-loop fermion

computation. For example the real part of φ interacts with itself via

K,µ,Φ0

P − K,−µ,−Φ0

I I = D–1(P) = –∫ d3k

(2π)3
Tr [Dψ(K)Dψ(P – K)] ,



ORDER N°: THE UNIVERSAL GOLDSTONE

The final result for the two real components is

D–1(P) = (κ0μ
π
+
2κ20(2κ20–1)ω2+(3κ60–2κ40–2κ20+2)p2

24πκ30(κ20–1)μ –
κ0
2π
ω

κ0
2π
ω

2κ0ω
2+κ30p

2

8π(κ20–1)μ
)+O(P3/μ3),

and from here we read the dispersion relations for a massive and for the

universal Goldstone mode

ω21 =
1

2
p2 +…,

ω22 = 12κ
4
0
κ20 – 1

2κ20 – 1
μ2 +

5κ60 – 5κ
4
0 – κ

2
0 + 2

2κ20(2κ20 – 1)
p2 +…



WHAT HAS HAPPENED?

• We have taken a model in which the fixed point is under large-N control

• Fixing the charge results in spontaneous symmetry breaking

• The order parameter is a composite field (Cooper pair)

• We compute the conformal dimension of the lowest operator of chargeQ

• We find a result in total agreement with the general EFT construction



THE GROSS–NEVEU–YUKAWA MODEL

Now for the Gross–Neveu–Yukawa model.

Integrating out the Matsubara frequencies we find

Ω

N
= –2∫ d2p

(2π)2 {ωp +
1

β
log (1 + e

–β(ωp+μ)) + (μ↔ –μ)} ,
with ω2p = p2 + σ20 . The gap equation is

σ0 –
1

β
log((1 + eβ(σ0+μ))(1 + eβ(σ0–μ))) = 0

and admits only the solution σ0 = 0.

In other words, in the large-N limit the symmetry is never broken.

This is different from the superfluid EFT behavior.



THE GROSS–NEVEU–YUKAWA MODEL
We can repeat the computation on the sphere. The grand potential is

Ω

N
= –

1

2πr20 [ ∑
ωj>μ

(2j + 1)ωj + μ ∑
ωj<μ

(2j + 1)]
the solution to the gap equation and the Legendre transform are

Q

N
=

1

2πr20
bμr0c(bμr0c + 1), E

N
=

1

6πr30
bμr0c(bμr0c + 1)(2bμr0c + 1).

This is the physics of a Fermi sphere.

However, the behavior of the conformal dimension is still the same

Δ =
2

3( Q

2N)3/2 + 1

12( Q

2N)1/2 – 1

192( Q

2N)–1/2 + ...



WHAT HAS HAPPENED?

• We have taken a model in which the fixed point is under large-N control

• Fixing the charge does not result in spontaneous symmetry breaking

• The physics is the one of a Fermi sphere

• The dimension of the lowest operator still obeys the same law

• Conundrum: is this a large-N effect or is there a finite-N transition?



RESURGENCE AND THE LARGE CHARGE



RESULTS FROM LARGE N
O(2N) at criticality in 1 + 2 dimensions on R × Σ. Double-scaling limit N → ∞,
Q → ∞ with q̂ = Q/(2N) fixed.

{FΣ (Q) = μQ +Nζ(–1
2
|Σ, μ),

μζ(1
2
|Σ, μ) = –

Q

N
.

ζ(s|Σ, μ) is the zeta function for the operator –4 + μ2 . In Mellin representation

ζ(s|Σ, μ) = 1

Γ(s) ∫
∞

0

dt

t
tse–μ

2 t Tr(e4t).

Large q̂ is large μ and is small t. The classical Seeley–de Witt problem:

Tr(e4t) ~ V

4πt(1 + R

12
t +…).
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THE TORUS
As a warm-up: Σ = T2 .

spec(4) = {–4π2L2 (k21 + k22) | k1 , k2 ∈ Z} .
It follows that the heat kernel trace is the square of a theta function:

Tr(e4t) = ∑
k1 ,k2∈Z

e
–
4π2

L2
(k21+k22)t

= [θ3(0,e
–
4π2 t

L2 )]2 .
We are interested in the small-t limit: we Poisson-resum the series:

Tr(e4t) = [ L
√
4πt(1 + ∑

k∈Z
e
–
k2L2

4t )]2 = L2

4πt(1 + ∑
k∈Z2

e
–
‖k‖2L2

4t )



THE TORUS
Grand potential

ω(μ) = –
1

2
ζ(–1

2
|T2 , μ) = L2μ3

12π (1 + ∑
k

e–‖k‖μL

‖k‖2μ2L2 (1 + 1

‖k‖μL)).
Free energy

f(q̂) = sup
μ

(μq̂ –ω(μ)) = 4
√
π

3L
q̂3/2(1 – ∑

k

e–‖k‖
√
4πq̂

8‖k‖2πq̂
+…).

• perturbative expansion in μ (here a single term) plus exponentially
suppressed terms controlled by the dimensionless parameter μL

• the free energy is written as a double expansion in the two parameters 1/q̂

and e–
√
4πq̂ .

• non-perturbative effects more important than the “usual” instantonsO(e–q̂)



THE SPHERE

On the two sphere spec(4) = {–`(` + 1) | ` ∈ N0} with multiplicity 2` + 1.

Again, we use Poisson resummation

Tr(e4t)e–t/4 = ∑
`≥0

(2` + 1)e–(`+1/2)2 t ~
1

t

∞

∑
n=0

(–1)n+1(1 – 21–2n)
n!

B2n t
n

The series is asymptotic: the Seeley–de Witt coefficients diverge like n!:

an =
(–1)n+1(1 – 21–2n)

n!
B2n ~

2n1/2

π5/2+2n
n!.

this divergence is reflected in the existence of non-perturbative corrections.



BOREL RESUMMATION



BOREL TRANSFORM
We need to make sense of the divergent series and the imaginary terms.

H(t) = ∑
n≥0

an t
n

Ĥ(τ) = ∑
n≥0

an
Γ(βn + b)

τn

s(H)(t) = ∫
∞

0

wbe–wĤ(twβ)dw
w



LATERAL TRANSFORM
If there are poles on the real positive axis there is an ambiguity

C+

C–

τ

s±(H)(t) = s(H)(t) = ∫
C±

wbe–wĤ(twβ)dw
w

s+(H) – s–(H) = (2πi)∑
k

residue

We need an independent definition of the non-perturbative effects to cancel
the imaginary ambiguity.



MORE INGREDIENTS



WORLDLINE INTERPRETATION
We need a non-perturbative interpretation of these exponential terms.

We read the heat kernel as the partition function of a particle at inverse

temperature t and Hamiltonian H = – ∂20 –4, i.e. a free quantum particle moving
on R × Σ.

We can write the partition function as a path integral

Tr(e(∂20+4)t) = N ∫
X(1)=X(0)

DXe–S[X]

where the action is

S[X] = 1

4t ∫
1

0

dτgμνẊ
μ(τ)Ẋν(τ)



A TRANSSERIES FROM GEODESICS
In the limit t → 0 the path integral localizes on a sum over all the closed
geodesics γ.

For each geodesic a perturbative series in t, weighted by e–`(γ)2/(4t)

Tr(e(∂20+4)t) = N ∫
X(1)=X(0)

DXe–S[X]

= t–b0
∞

∑
n=0

a(0)
n tn + ∑

γ ∈ closed geodesics
e
–
`(γ)2
4t t

–bγ
∞

∑
n=0

a(γ)
n tn ,

the bγ depend on the geometry.

This is precisely the same structure predicted by resurgence.

Now we have a geometric interpretation.



THE TORUS
In the case of the torus, closed geodesics are labelled by two integers (k1 , k2)

The length of the geodesic is `(k1 , k2) = L

√
k21 + k22 .

The integral is quadratic and the fluctuations around each geodesic give the
usual

N ∫
h(1)=h(0)=0

Dhe–
1

4t
∫10 dτ(ḣ

1)2+(ḣ2)2
= N det( 14t ∂2τ )

–1
=

1

4πt
.



THE TORUS

Now we can write the result of the path integral

Tr(e4t) = N ∫
X(1)=X(0)

DXe–S[X] = NL2 ∑
Xcl

∫
h(1)=h(0)=0

e–S[Xcl]–S[h]

= NL2 ∑
k∈Z2

e
–
L2(k21+k

2
2)

4t ∫
h(1)=h(0)=0

Dhe–S[h] ,

=
L2

4πt[1 + ∑
k∈Z2

e
–
L2‖k‖2

4t ]
This is exactly what we had found before just by looking at the spectrum.
Now we can understand the non-perturbative effects in terms of closed
geodesics.



THE SPHERE
Closed geodesics on the sphere go around the equator k times

We need to sum over the fluctuations hφ and hθ

There is a zero mode because we can rotate the equator

And an instability because we can slide off
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BACK TO RESURGENCE

Putting it all together, the non-trivial geodesics give

±2i(πt )3/2 ∑
k∈Z

|k|e–
k2π2

t

The one-loop result perfectly cancels the imaginary ambiguity of the Borel sum!

Tr(e(4–
1

4
)t) = s±(H)(t) ∓ 2i(πt )3/2 ∑

k≥1
(–1)kke–

k2π2

t = Re[s±(H)(t)]



BACK TO RESURGENCE

We can write the exact expression for the grand potential (m2 = μ2 + 1/4):

ω(μ) = Re[2rm2

π ∫
∞

0

dy
K2(2mry)
y sin(y) ] = r2

3
m3–

m

24
+· · ·–2ir

1/2m3/2

(4π)3/2
e–2πrm+…

As a numerical test, we can compare with the convergent small-charge
expansion (q̂ ≈ 0.6)

rω(mr = 0.4)
∣∣∣∣
small charge

= 0.01277729663…

rω(mr = 0.4)
∣∣∣∣
resurgence

= 0.01277729769…
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OPTIMAL TRUNCATION



LESSONS FROM LARGE N
Let’s go back to the EFT.
The effective action is identified with the asymptotic expansion: the grand
potential is the value of the action at the minimum χ = μt:

ω(μ) = LEFT

∣∣∣∣
χ=μt

where

LEFT = ω0(∂μχ ∂μχ)3/2 + ω1(∂μχ ∂μχ)1/2 +…,

In general the coefficients are unknown

BUT

Now we have a geometric understanding of the non-perturbative effects



LESSONS FROM LARGE N

Assume:

1. the large-charge expansion is asymptotic;

2. the leading pole in the Borel plane is
a particle of mass μ going around the equator.

A CFT has no intrinsic scales.
The only dimensionful parameter is due to the fixed charge density.

The conformal dimension is a transseries

Δ(Q) = Q3/2 ∑
n≥0

f(0)
n

1

Qn + C1Q
b1 e–3πκf

(0)
0

√
Q ∑

n≥0
f(1)
n

1

Qn/2
+…

(we used μ = 3f(0)
0

√
Q/2 +….)
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LESSONS FROM LARGE N

• The controlling parameter for the non-perturbative effects e–3πκf
(0)
0

√
Q is

fixed by the leading term in the 1/Q expansion.

• The non-perturbative coefficient e–3πκf
(0)
0

√
Q fixes the large-n behavior of

the perturbative series f(0)
n .

f(0)
n ~ (2n)!(3πκf(0)

0 )–n

We don’t know enough for a Borel resummation, but we can estimate an

optimal trucation (the value of n where f(0)
n Q–n is minimal)

N* ≈
3πκf(0)

0

2
Q1/2

corresponding to an error of order ε(Q) = O(e–√Q)



CAN WE UNDERSTAND THE LATTICE RESULTS NOW?
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D
(Q

)

Q

MC data
fit 

InO(2), f(0)
0 ≈ 0.301(3)

so N* = O(√Q) and ε(Q) = O(e–π√Q).

Lattice: Best fit with N = 3 terms.
AtQ = 1 the error is ≈ 6×10–2 ; atQ = 11 the error is ≈ 5×10–5 .

Resurgence:
√
10 ≈ 3.16

e–π ≈ 4 × 10–2 and e–π
√
11 = 3 × 10–5 .



WHAT HAS HAPPENED?

• The large-charge expansion of the Wilson–Fisher point is asymptotic

• In the double-scaling limitQ → ∞,N → ∞ we control the perturbative
expansion

• We can Borel-resum the expansion

• We have a geometric interpretation for the non-perturbative effects

• We can use this geometric interpretation also in the finite-N case

• We obtain an optimal truncation and estimate of the error

• The results are consistent with lattice simulations



CONCLUSIONS

• With the large-charge approach we can study strongly-coupled systems

perturbatively.

• Select a sector and we write a controllable effective theory.

• The strongly-coupled physics is (for the most part) subsumed in a

semiclassical state.

• Precise and testable predictions.

• Qual(nt)itative control of the non-pertubative effects.

• CFT constraints: perturbative/non-perturbative interplay.

• Remarkable agreement with lattice.



AN EFT FOR A CFT



THE O(2) MODEL

The simplest example is the WF point of theO(2) model in three dimensions.
• Non-trivial fixed point of the φ4 action

LUV = ∂μφ
* ∂μφ – u(φ*φ)2

• Strongly coupled

• In nature: 4He.

• Simplest example of spontaneous symmetry breaking.

• Not accessible in perturbation theory. Not accessible in 4 – ε. Not

accessible in large N.

• Lattice. Bootstrap.



CHARGE FIXING

We consider a subsector of fixed chargeQ.

Generically, the classical solution at fixed charge breaks spontaneously

U(1) → ∅.

We have one Goldstone boson χ.



AN ACTION FOR χ

Start with two derivatives:

L[χ] = fπ
2
∂μχ ∂μχ – C

3

(χ is a Goldstone so it is dimensionless.)

We want to describe a CFT: we can dress with a dilaton

L[σ, χ] = fπe
–2fσ

2
∂μχ ∂μχ – e

–6fσC3 +
e–2fσ

2 (∂μσ∂μσ – ξRf2 )
The fluctuations of χ give the Goldstone for the broken U(1), the fluctuations of
σ give the (massive) Goldstone for the broken conformal invariance.
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LINEAR SIGMA MODEL
We can put together the two fields as

Σ = σ + ifπχ

and rewrite the action in terms of a complex scalar

φ =
1

√
2f
e–fΣ

We get

L[φ] = ∂μφ* ∂μφ – ξRφ*φ – u(φ*φ)3

Only depends on dimensionless quantities b = f2 fπ and u = 3(Cf2)3 .
Scale invariance is manifest.

The field φ is some complicated function of the original φ.



CENTRIFUGAL BARRIER
TheO(2) symmetry acts as a shift on χ.

Fixing the charge is the same as adding a centrifugal term ∝ 1

|φ|2
.

|φ 2

V

OO

AA

BB



GROUND STATE

We can find a fixed-charge solution of the type

χ(t, x) = μt σ(t, x) = 1

f
log(v) = const.,

where

μ ∝ Q1/2 +… v ∝ 1

Q1/2

The classical energy is

E = c3/2/
√
VQ3/2 + c1/2R

√
VQ1/2 +O(Q–1/2)



FLUCTUATIONS

The fluctuations over this ground state are described by two modes.

• A universal “conformal Goldstone”. It comes from the breaking of the U(1).

ω =
1
√
2
p

• Themassive dilaton. It controls the magnitude of the quantum fluctuations.

All quantum effects are controled by 1/Q.

ω = 2μ +
p2

2μ

(This is a heavy fluctuation around the semiclassical state. It has nothing to

do with a light dilaton in the full theory)



NON-LINEAR SIGMA MODEL
Since σ is heavy we can integrate it out and write a non-linear sigma

model (NLSM) for χ alone.

L[χ] = k3/2(∂μχ ∂μχ)3/2 + k1/2R(∂μχ ∂μχ)1/2 +…

These are the leading terms in the expansion around the classical solution

χ = μt.

All other terms are suppressed by powers of 1/Q.

In 3 + 1 nrcft the analogous story in a background potential A0 leads to

L[χ] = c0U
5/2 + c1U

–1/2 ∂iU ∂iU + c2U
1/2((∂i∂iχ)2 – 9∂i∂iA0) +… (1)

where U = ∂tχ – A0χ – ∂iχ ∂iχ/2.



STATE-OPERATOR CORRESPONDENCE
The anomalous dimension on Rd is the energy in the cylinder frame.

ΔSd–1

Rd

H

R × Sd–1

Sd–1

Protected by conformal invariance: a well-defined quantity.



NRCFT STATE-OPERATOR CORRESPONDENCE
The anomalous dimension on Rd is the energy in a harmonic trap.

Protected by conformal invariance: a well-defined quantity.



CONFORMAL DIMENSIONS
We know the energy of the ground state.

The leading quantum effect is the Casimir energy of the conformal Goldstone.

EG =
1

2
√
2
ζ(–1

2
|S2) = –0.0937…

This is the unique contribution of orderQ0 .

Final result: the conformal dimension of the lowest operator of chargeQ in the

O(2) model has the form

ΔQ =
c3/2
2
√
π
Q3/2 + 2

√
πc1/2Q

1/2 – 0.094… +O(Q–1/2)
In 3 + 1 nrcft we find

ΔQ = c4/3Q
4/3+c2/3Q

2/3+b5/9Q
5/9+b1/3Q

1/3+b1/9Q
1/9–

1

3
√
3
log(Q)+c0



WHAT HAPPENED?
We started from a CFT.

There is no mass gap, there are no particles, there is no Lagrangian.

We picked a sector.

In this sector the physics is described by a semiclassical configuration plus

massless fluctuations.

The full theory has no small parameters but we can study this sector with a

simple EFT.

We are in a strongly coupled regime but we can compute physical observables

using perturbation theory.



ORDER N°
The order N0 terms are

Sθ[σ̂, λ̂] = ∫dtdΣ ((Dμ σ̂)*(Dμ σ̂) + (μ2 + λ̂)σ̂* σ̂ + λ̂v(σ̂ + σ̂*)
(N – 1)1/2 )

+
1

2 ∫dx1 dx2 λ̂(x1)λ̂(x2)D(x1 – x2)2

where D(x – y) is the propagator (DμDμ +m2)–1 .

At low energies we can approximate the non-local term as

∫dtdΣ λ̂(x)2ζ(2|θ, Σ, μ) ≈ V

2μ ∫dtdΣ λ̂(x)2

and we can integrate λ̂ out.



ORDER N°
The inverse propagator for σ is

(1/2(ω2 + p2 + 4μ2) μω

–μω 1/2(ω2 + p2))
It describes a massive mode and a massless mode with dispersion

ω2 +
1

2
p2 +… = 0 ω2 + 8μ2 +

3

2
p2 +… = 0

This is the conformal Goldstone that we have seen in the EFT.

Its contribution to the partition function is

EG =
1

2

1
√
2
ζ(1/2|S2) = –0.0937…

This is universal. Does not depend on N orQ.



HIGHER ORDERS

There are infinite non-local terms

Snl =
∞

∑
n=3

1

n(N – 1)n/2–1 ∫dx1…dxn λ̂(x1)…λ̂(xn)P(x1 ,…, xn)

At low energy they are approximated by

Snl =
∞

∑
n=3

1

n(N – 1)n/2–1 ∫dx λ̂(x)nCn



HIGHER ORDERS

There is only one scale, the charge density ρ = Q/V. We must have

Cn = ρ
3/2–nCn

So

Snl = Q3/2
∞

∑
n=3

Cn

n(N – 1)n/2–1 ∫dx λ̄(x)n

Infinite corrections of orderQ3/2 (and following), controlled by 1/N.
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