The Resurgence of the Large Charge expansion

Domenico Orlando INFN | Torino

YITP | 10 January 2025

arXiv:2102.12488, and to appear

WHAT HAPPENED?

We started from a conformal field theory (CFT). There is no mass gap, there are **no particles**, there is **no Lagrangian**.

We picked a sector.

In this sector the physics is described by a **semiclassical configuration** plus massless fluctuations.

The full theory has no small parameters but we can study this sector with a **simple effective field theory (EFT)**.

We are in a **strongly coupled** regime but we can compute physical observables using **perturbation theory**.

Justify and prove all these claims from first principles

Justify and prove all these claims from first principles

Use resurgence for the large-charge EFT

TODAY'S TALK

Justify and prove all these claims from first principles

- well-defined asymptotic expansion (in the technical sense)
- justify why the expansion works at small charge
- compute the coefficients in the effective action in large-N

Use resurgence for the large-charge EFT

TODAY'S TALK

Justify and prove all these claims from first principles

Use resurgence for the large-charge EFT

- * Borel resum the double-scaling $\mathsf{Q} \to \infty, \mathsf{N} \to \infty$ limit
- geometric interpretation of non-perturbative effects
- general structure of the corrections in the EFT

LARGE N VS. LARGE CHARGE

THE MODEL

 ϕ^4 model on $\mathbb{R} \times \Sigma$ for N complex fields

$$S_{\theta}[\phi_{i}] = \sum_{i=1}^{N} \int dt \, d\Sigma \left[g^{\mu\nu} \left(\partial_{\mu} \phi_{i} \right)^{*} \left(\partial_{\nu} \phi_{i} \right) + r \phi_{i}^{*} \phi_{i} + \frac{u}{2} \left(\phi_{i}^{*} \phi_{i} \right)^{2} \right]$$

It flows to the WF in the IR limit $u\to\infty$ when r is fine-tuned. We compute the partition function at fixed charge

$$Z(\boldsymbol{Q}_1,...,\boldsymbol{Q}_N) = Tr \Bigg[e^{-\beta H} \prod_{i=1}^N \delta(\hat{\boldsymbol{Q}}_i - \boldsymbol{Q}_i) \Bigg]$$

where

$$\hat{Q}_{i} = \int d\Sigma j_{i}^{0} = i \int d\Sigma \left[\dot{\phi}_{i}^{*} \phi_{i} - \phi_{i}^{*} \dot{\phi}_{i} \right].$$

Explicitly

$$Z = \int_{-\pi}^{\pi} \prod_{i=1}^{N} \frac{d\theta_i}{2\pi} \prod_{i=1}^{N} e^{i\theta_i Q_i} \operatorname{Tr} \left[e^{-\beta H} \prod_{i=1}^{N} e^{-i\theta_i \hat{Q}_i} \right].$$

Since $\hat{\Omega}$ depends on the momenta, the integration is not trivial but well understood.

$$\begin{split} Z_{\Sigma}(\Omega) &= \int_{-\pi}^{\pi} \frac{d\theta}{2\pi} e^{-i\theta\Omega} \int_{\phi(2\pi\beta)=e^{i\theta}\phi(0)} D\phi_i \, e^{-S[\phi]} \\ &= \int_{-\pi}^{\pi} \frac{d\theta}{2\pi} e^{-i\theta\Omega} \int_{\phi(2\pi\beta)=\phi(0)} D\phi_i \, e^{-S^{\theta}[\phi]} \end{split}$$

Explicitly

$$Z = \int_{-\pi}^{\pi} \prod_{i=1}^{N} \frac{d\theta_i}{2\pi} \prod_{i=1}^{N} e^{i\theta_i Q_i} \operatorname{Tr} \left[e^{-\beta H} \prod_{i=1}^{N} e^{-i\theta_i \hat{Q}_i} \right].$$

Since $\hat{\Omega}$ depends on the momenta, the integration is not trivial but well understood.

$$\begin{split} Z_{\Sigma}(\Omega) &= \int_{-\pi}^{\pi} \frac{d\theta}{2\pi} e^{-i\theta\Omega} \int_{\phi(2\pi\beta)=e^{i\theta}\phi(0)} D\phi_i \, e^{-S[\phi]} \\ &= \int_{-\pi}^{\pi} \frac{d\theta}{2\pi} e^{-i\theta\Omega} \int_{\phi(2\pi\beta)=\phi(0)} D\phi_i \, e^{-S^{\theta}[\phi]} \end{split}$$

Explicitly

$$Z = \int_{-\pi}^{\pi} \prod_{i=1}^{N} \frac{d\theta_i}{2\pi} \prod_{i=1}^{N} e^{i\theta_i Q_i} \operatorname{Tr} \left[e^{-\beta H} \prod_{i=1}^{N} e^{-i\theta_i \hat{Q}_i} \right].$$

Since $\hat{\Omega}$ depends on the momenta, the integration is not trivial but well understood.

$$Z_{\Sigma}(Q) = \int_{-\pi}^{\pi} \frac{d\theta}{2\pi} e^{-i\theta Q} \int_{\phi(2\pi\beta)=e^{i\theta}\phi(0)} D\phi_{i} e^{-S[\phi]}$$
$$= \int_{-\pi}^{\pi} \frac{d\theta}{2\pi} e^{-i\theta Q} \int_{\phi(2\pi\beta)=\phi(0)} D\phi_{i} e^{-S^{\theta}[\phi]}$$

EFFECTIVE ACTION: COVARIANT DERIVATIVE

$$S^{\theta}[\phi] = \sum_{i=1}^{N} \int dt d\Sigma \left(\left(D_{\mu} \phi_{i} \right)^{*} \left(D^{\mu} \phi_{i} \right) + \frac{R}{8} \phi_{i}^{*} \phi_{i} + 2u \left(\phi_{i}^{*} \phi_{i} \right)^{2} \right)$$

$$\begin{cases} D_0 \phi = \partial_0 \phi + i \frac{\theta}{\beta} \phi \\ D_i \phi = \partial_i \phi \end{cases}$$

Stratonovich transformation

$$S_{Q} = \sum_{i=1}^{N} \left[-i\theta_{i}Q_{i} + \int dt d\Sigma \left[\left(D_{\mu}^{i}\phi_{i} \right)^{*} \left(D_{\mu}^{i}\phi_{i} \right) + (r + \lambda)\phi_{i}^{*}\phi_{i} \right] \right]$$

Expand around the VEV

$$\varphi_{i} = \frac{1}{\sqrt{2}} A_{i} + u_{i}, \qquad \lambda = m^{2} + \hat{\lambda}$$

EFFECTIVE ACTION FOR $\hat{\lambda}$

We can now integrate out the u_i and get an effective action for $\hat{\lambda}$ alone

$$S_{\theta}[\hat{\lambda}] = \sum_{i=1}^{N} \left[V\beta \left(\frac{\theta_i^2}{\beta^2} + m^2 \right) \frac{A_i^2}{2} + Tr \left[log \left(-D_{\mu}^i D_{\mu}^i + m^2 + \hat{\lambda} \right) \right] \right].$$

Non-local action for $\hat{\lambda}$.

To be expanded order-by-order in 1/N.

We can identify the functional determinant with the grand-canonical (fixed chemical potential) free energy:

$$F_{gc}^{\mathfrak{F}}(i\theta) = \sum_{i=1}^{N} \left[V \left(\frac{\theta_i^2}{\beta^2} + m^2 \right) \frac{A_i^2}{2} + \frac{1}{\beta} \operatorname{Tr} \left[\log \left(-D_{\mu}^i D_{\mu}^i + m^2 \right) \right] \right].$$

ZETA FUNCTIONS

In the limit $\beta \to \infty$ (zero temperature), we regularize with a zeta function $\zeta(s|\Sigma,m) = \sum_p (E(p)^2 + m^2)^{-s}$: The gap equations are (set $A_1 = v$, $A_{>1} = 0$):

$$\begin{split} &\frac{\delta}{\delta m}: Vv^2 + \frac{N-1}{2}\zeta(1/2|\Sigma,m) = 0,\\ &\frac{\delta}{\delta \theta}: -iQ + \frac{2V}{\beta}\theta v^2 = 0,\\ &\frac{\delta}{\delta v}: 2V\beta \left(m^2 + \frac{\theta^2}{\beta^2}\right)v = 0, \end{split}$$

For finite Q we need necessarily v \neq 0 and then θ = im $\beta.$ So we get

$$m\zeta(1/2|\Sigma,m) = -\frac{Q}{N-1}$$

At leading order in N, the free energy is

$$F(Q) = -\frac{1}{\beta} \left(i\theta Q + N \left. \frac{\partial}{\partial s} \frac{\Gamma(s - 1/2)}{2\sqrt{n}\Gamma(s)} \beta \zeta(s - 1/2|\Sigma, m) \right|_{s=0} \right)$$

Using the gap equations

 $F(Q) = mQ + N\zeta(-1/2|\Sigma,m)$

For $\Sigma = S^2$ at large Q/N:

$$F(Q) = \frac{N\sqrt{2}}{3} \left(\frac{Q}{N}\right)^{3/2} + \frac{N}{3\sqrt{2}} \left(\frac{Q}{N}\right)^{1/2} - \frac{7N}{180\sqrt{2}} \left(\frac{Q}{N}\right)^{-1/2} + \dots$$

SMALL Q/N

The zeta function can be expanded in perturbatively in small Q/N. Result:

$$\frac{\Delta(Q)}{Q} = \frac{1}{2} + \frac{4}{\pi^2} \frac{Q}{N} + \frac{16(\pi^2 - 12)Q^2}{3\pi^4 N^2} + \dots$$

- Expansion of a closed expression
- Start with the engineering dimension 1/2
- Reproduce an infinite number of diagrams from a fixed-charge one-loop calculation

$$F_{S^{2}}(Q) = \frac{4N}{3} \left(\frac{Q}{2N}\right)^{3/2} + \frac{N}{3} \left(\frac{Q}{2N}\right)^{1/2} - \frac{71N}{90720} \left(\frac{Q}{2N}\right)^{-3/2} + \mathcal{O}\left(e^{-\sqrt{Q/(2N)}}\right)$$

$$F_{S^{2}}(Q) = \frac{4N}{3} \left(\frac{Q}{2N}\right)^{3/2} + \frac{N}{3} \left(\frac{Q}{2N}\right)^{1/2} - \frac{7N}{360} \left(\frac{Q}{2N}\right)^{-1/2} - \frac{71N}{90720} \left(\frac{Q}{2N}\right)^{-3/2} + \mathcal{O}\left(e^{-\sqrt{Q/(2N)}}\right)$$

$$F_{S^{2}}(\Omega) = \frac{4N}{3} \left(\frac{\Omega}{2N}\right)^{3/2} + \frac{N}{3} \left(\frac{\Omega}{2N}\right)^{1/2} - \frac{7N}{360} \left(\frac{\Omega}{2N}\right)^{-1/2} - \frac{71N}{90720} \left(\frac{\Omega}{2N}\right)^{-3/2} + \mathcal{O}\left(e^{-\sqrt{\Omega/(2N)}}\right)$$

FINAL RESULT

$$\Delta(\mathbf{Q}) = \left(\frac{4\mathsf{N}}{3} + \mathcal{O}\left(\mathsf{N}^{0}\right)\right)$$
$$- 0.0937...$$

+ O(N⁰) fields we separate to see the Goldstones

fields in the path integral

the fields we start with

FINAL RESULT

$$\Delta(\mathbf{Q}) = \left(\frac{4\mathsf{N}}{3} + \mathcal{O}(\mathsf{N}^0)\right)$$

- 0.0937...

Leading coupling $c_{3/2}$

O(N⁰) fields we separate to see the Goldstones

FERMIONS AT LARGE N

GROSS-NEVEU AND NAMBU-JONA-LASINIO

Simplest four-Fermi models

$$\begin{split} S_{GN}[\psi] &= \int dt \, d\Sigma \sum_{i=1}^{N} \bar{\psi}_{i} \gamma^{\mu} \, \partial_{\mu} \psi_{i} - \frac{g}{2N} (\bar{\psi}\psi)^{2} \\ S_{NJL}[\psi, \phi] &= \int dt \, d\Sigma \sum_{i=1}^{N} \bar{\psi}_{i} \gamma^{\mu} \, \partial_{\mu} \psi_{i} - \frac{g}{N} \Big[(\bar{\psi}\psi)^{2} - (\bar{\psi}\gamma_{5}\psi)^{2} \Big] \end{split}$$

Respectively O(4N) and U(N) \times U(1) symmetry. Non-trivial CFT in the ultraviolet (UV). Convenient to introduce collective fields

$$\begin{split} \sigma &= \frac{g}{N} \bar{\psi} \psi \\ \phi &= \frac{g}{N} \Big(\bar{\psi} \psi + \bar{\psi} \gamma^5 \psi \Big) \end{split}$$

GNY AND NJL MODELS AT LARGE N

$$\begin{split} S_{GNY}[\psi,\sigma] &= \int dt \, d\Sigma \sum_{i=1}^{N} \bar{\psi}_{i} \left(\gamma^{\mu} \, \partial_{\mu} + \sigma \right) \psi_{i} + \frac{1}{2g_{Y}} \partial_{\mu} \sigma \partial_{\mu} \sigma . \\ S_{NJL}[\psi,\phi] &= \int dt \, d\Sigma \sum_{i=1}^{N} \bar{\psi}_{i} \left[\gamma^{\mu} \, \partial_{\mu} + \phi \left(\frac{1+\gamma_{5}}{2} \right) + \phi^{*} \left(\frac{1-\gamma_{5}}{2} \right) \right] \psi_{i} + \frac{1}{g_{Y}} \partial_{\mu} \phi^{*} \, \partial_{\mu} \phi \end{split}$$

They flow in the IR to the same CFTs. We want to fix U(1) charges.

$$\begin{split} \psi_i &\to e^{i\alpha}\psi_i, \\ \psi &\to e^{i\alpha\gamma_5}\psi, \qquad \qquad \phi \to e^{-2i\alpha}\phi, \end{split}$$

and compute the partition function at fixed charge

$$Z(Q) = Tr \Big[e^{-\beta H} \delta(\hat{Q} - Q) \Big].$$

$$Z_{\Sigma}(Q) = \int_{-\pi}^{\pi} \frac{d\theta}{2\pi} e^{i\theta Q} \operatorname{Tr} \left[e^{-\beta H} e^{-i\theta \hat{Q}} \right].$$

At large N the integral over $\boldsymbol{\theta}$ becomes a Legendre transform

$$\Delta(\mathbf{Q}) = -\frac{1}{\beta} \log \left(\mathsf{Z}_{\mathsf{S}^2}(\mathbf{Q}) \right) = \sup_{i\theta} (i\theta \mathbf{Q} - \mathsf{S}_{\mathsf{eff}}(\theta))$$

The trace is written as a path integral in two ways:

$$Z_{\Sigma}(Q) = \int_{-\pi}^{\pi} \frac{d\theta}{2\pi} e^{-i\theta Q} \int_{\substack{\psi(2\pi\beta) = -e^{-\theta}\psi(0)\\\phi(2\pi\beta) = e^{2i\theta}\phi(0)}} \mathcal{D}\phi_{i} e^{-S^{\theta}[\phi]}$$
$$= \int_{-\pi}^{\pi} \frac{d\theta}{2\pi} e^{-i\theta Q} \int_{\substack{\psi(2\pi\beta) = -\psi(0)\\\phi(2\pi\beta) = \phi(0)}} \mathcal{D}\phi_{i} e^{-S^{\theta}[\phi]}$$

EFFECTIVE ACTION: COVARIANT DERIVATIVE

The actions are quadratic in the fermions. We can integrate them out. For the bosonic fields, we expand as vacuum expectation value (VEV) plus fluctuations

$$\sigma = \sigma_0 + \frac{1}{\sqrt{N}}\hat{\sigma}$$
$$\phi_0 = \phi_0 + \frac{1}{\sqrt{N}}\hat{\phi}$$

The leading contribution comes from the VEV:

$$\begin{split} \Omega &= S_{eff} = -N \, Tr \log \! \left(\gamma^{\mu} \partial_{\mu} - i \frac{\theta}{\beta} \gamma_3 + \sigma_0 \right) \\ \Omega &= S_{eff} = -N \, Tr \log \! \left(\gamma^{\mu} \partial_{\mu} - i \frac{\theta}{\beta} \gamma_3 \gamma_5 + \phi_0 \left(\frac{1 + \gamma_5}{2} \right) + \phi_0^* \left(\frac{1 - \gamma_5}{2} \right) \right) \end{split}$$

This has to be minimized with respect to σ_0 and ϕ_0 (gap equation). We can read $i\theta/\beta = \mu$ as a chemical potential.

THE NAMBU-JONA-LASINIO MODEL

In the $\beta \to \infty$ limit, on the torus $\Sigma = T^2$, the grand potential is

$$\begin{split} & \Omega \\ & \Omega \\ & N \\ & = -\int \frac{d^2 p}{(2\pi)^2} \bigg[\sqrt{(|p|+\mu)^2 + |\phi_0|^2} + \sqrt{(|p|-\mu)^2 + |\phi_0|^2} \bigg] \\ & = -\frac{1}{6\pi} \Bigg[3|\phi|^2 \mu \, arctanh \, \frac{\mu}{\sqrt{|\phi|^2 + \mu^2}} + (\mu^2 - 2|\phi|^2) \sqrt{|\phi|^2 + \mu^2} \Bigg] \end{split}$$

THE NAMBU-JONA-LASINIO MODEL

This is the physics that we had discussed before: fixing the charge induces a spontaneous symmetry breaking.

The field ϕ is the order parameter for the superfluid phase transition.

COOPER PAIRS

The scalar ϕ can be understood as a composite field

$$\phi=\bar\psi\psi+\bar\psi\gamma^5\psi$$

Its meaning is even more transparent after a Pauli-Gürsey transformation:

$$\psi\mapsto \frac{1}{2}\Big[(1-\gamma_5)\psi-(1+\gamma_5)C\bar\psi^T\Big],\quad \ \ \bar\psi\mapsto \frac{1}{2}\Big[\bar\psi(1+\gamma_5)-\psi^TC(1-\gamma_5)\Big].$$

because then we identify $\boldsymbol{\phi}$ with a Cooper pair

$$\varphi = \psi^{t} C \psi$$

In presence of an attractive interactions, fermion form pairs that behave as bosons and undergo a Bose-Einstein transition.

CONFORMAL DIMENSIONS

Now we can repeat the computation on S^2 .

By the state-operator correspondence, the free energy is the conformal dimension of the lowest operator.

$$\Omega = -\frac{N}{4\pi r_0^2} \sum_{j=1/2}^{\infty} (2j+1) \big(\Omega_+ + \Omega_- \big), \qquad \qquad \Omega_\pm = |\phi|^2 + (\omega_j \pm \mu)^2,$$

where $\omega_j = j + 1/2$ are the eigenvalues on the sphere. We need to minimize with respect to ϕ and Legendre transform from the chemical potential μ to the charge Q.

Two regimes:

- The large-charge regime $Q\gg N,$
- The small-charge regime $Q \ll N_{PR}$

LARGE CHARGE

We need to regularize the sums (ask). The grand potential has two pieces:

$$\begin{split} \Omega_{\rm r} &= -\frac{2{\sf N}}{3}({\sf r}_0\mu)^3 \Big(3({\sf \kappa}_0^2-1)\,{\rm arccoth}\,{\sf \kappa}_0+3{\sf \kappa}_0-2{\sf \kappa}_0^3+2({\sf \kappa}_0^2-1)^{3/2}\Big)+...,\\ \Omega_{\rm d} &= {\sf N}\Bigg(\frac{4(\phi_0{\sf r}_0)^3}{3}+\frac{\phi_0{\sf r}_0}{3}-\frac{1}{60\phi_0{\sf r}_0}+...\Bigg). \end{split}$$

In the large-charge regime we look for a solution of the form

$$\varphi_0 r_0 = \sqrt{\kappa_0^2 - 1} \left(\mu r_0 + \frac{\kappa_1}{\mu r_0} + \frac{\kappa_2}{(\mu r_0)^3} + \dots \right).$$

After some algebra we can solve the gap equation order-by-order

$$\kappa_0 \tanh \kappa_0 = 1,$$
 $\kappa_1 = -\frac{1}{12\kappa_0^2},$ $\kappa_2 = \frac{33 - 16\kappa_0^2}{1440\kappa_0^6},$

. . .

$$\begin{split} \mathsf{F}_{\mathsf{S}^2}\left(\mathsf{Q}\right) &= \frac{4\mathsf{N}}{3} \left(\frac{\mathsf{Q}}{2\mathsf{N}\kappa_0}\right)^{3/2} + \frac{\mathsf{N}}{3} \left(\frac{\mathsf{Q}}{2\mathsf{N}\kappa_0}\right)^{1/2} \\ &- \frac{11 - 6\kappa_0^2}{360\kappa_0^2} \left(\frac{\mathsf{Q}}{2\mathsf{N}\kappa_0}\right)^{-1/2} + \mathcal{O}\left(\mathsf{e}^{-\sqrt{\mathsf{Q}/(2\mathsf{N})}}\right) \end{split}$$

$$F_{S^{2}}(Q) = \frac{4N}{3} \left(\frac{Q}{2N\kappa_{0}}\right)^{3/2} + \frac{N}{3} \left(\frac{Q}{2N\kappa_{0}}\right)^{1/2} \\ - \frac{11 - 6\kappa_{0}^{2}}{360\kappa_{0}^{2}} \left(\frac{Q}{2N\kappa_{0}}\right)^{-1/2} + \mathcal{O}\left(e^{-\sqrt{Q/(2N)}}\right)$$

$$F_{S^{2}}(Q) = \frac{4N}{3} \left(\frac{Q}{2N\kappa_{0}}\right)^{3/2} + \frac{N}{3} \left(\frac{Q}{2N\kappa_{0}}\right)^{1/2} \\ -\frac{11 - 6\kappa_{0}^{2}}{360\kappa_{0}^{2}} \left(\frac{Q}{2N\kappa_{0}}\right)^{-1/2} + \mathcal{O}\left(e^{-\sqrt{Q/(2N)}}\right)$$
ORDER N

ORDER N

SMALL CHARGE

In the small charge regime, we need again to separate the regular from the divergent part:

$$\begin{split} \Omega_r &= -2N\sum_{\ell=1}^{\infty}\ell\left[\sqrt{(\ell+\frac{1}{2}+\hat{\mu}r_0)^2+(\phi_0r_0)^2}+\sqrt{(\ell-\frac{1}{2}-\hat{\mu}r_0)^2+(\phi_0r_0)^2}\right.\\ &\quad -\sqrt{(\ell+\frac{1}{2})^2+(\phi_0r_0)^2}+\sqrt{(\ell-\frac{1}{2})^2+(\phi_0r_0)^2}\right],\\ \Omega_d &= -4N\sum_{\ell=1}^{\infty}(\ell+\frac{1}{2})\sqrt{(\ell+\frac{1}{2})^2+(\phi_0r_0)^2}. \end{split}$$

The divergent part can be understood in terms of zeta functions (ask)

SMALL CHARGE

Now we expand around $\mu = 1/(2r_0)$ in powers of μ . This is the conformal coupling to a cylinder in three dimensions.

$$\mu = 1/(2r_0) + \mu_2 \varphi_0^2 r_0 + \mu_4 \varphi_0^4 r_0^3 + \dots$$

With some algebra

$$\frac{\Delta(\mathbf{Q})}{2\mathsf{N}} = \frac{1}{2} \left(\frac{\mathsf{Q}}{2\mathsf{N}} \right) + \frac{2}{\mathsf{n}^2} \left(\frac{\mathsf{Q}}{2\mathsf{N}} \right)^2 + \dots$$

Consistent with the fact that ϕ has charge two and dimension 1/2, so that $\Delta(Q)\approx Q/2.$

ORDER N°

In the EFT we had a universal term. Is it really universal? Here it can only appear at order 1/N, so we need to compute the fluctuations around the vacuum. The fermion propagator is

 $D_{\Psi}(P) = (-iP + \phi_0 - \mu\Gamma_3\Gamma_5)^{-1}.$

The fluctuations for the scalars are obtained with a one-loop fermion computation. For example the real part of ϕ interacts with itself via

$$\mathbb{I} \bigoplus_{P-K, -\mu, -\Phi_0}^{K, \mu, \Phi_0} \mathbb{I} = D^{-1}(P) = -\int \frac{d^3k}{(2\pi)^3} \operatorname{Tr} \left[D_{\psi}(K) D_{\psi}(P-K) \right],$$

ORDER N°: THE UNIVERSAL GOLDSTONE

The final result for the two real components is

$$D^{-1}(P) = \begin{pmatrix} \frac{\kappa_0 \mu}{n} + \frac{2\kappa_0^2 \left(2\kappa_0^2 - 1\right)\omega^2 + \left(3\kappa_0^6 - 2\kappa_0^4 - 2\kappa_0^2 + 2\right)p^2}{24\pi\kappa_0^3 (\kappa_0^2 - 1)\mu} & -\frac{\kappa_0}{2\pi}\omega \\ \frac{\kappa_0}{2\pi}\omega & \frac{2\kappa_0\omega^2 + \kappa_0^3p^2}{8\pi(\kappa_0^2 - 1)\mu} \end{pmatrix} + \mathcal{O}(P^3/\mu^3),$$

and from here we read the dispersion relations for a massive and for the universal Goldstone mode

$$\begin{split} \omega_1^2 &= \frac{1}{2}p^2 + \dots, \\ \omega_2^2 &= 12\kappa_0^4 \frac{\kappa_0^2 - 1}{2\kappa_0^2 - 1}\mu^2 + \frac{5\kappa_0^6 - 5\kappa_0^4 - \kappa_0^2 + 2}{2\kappa_0^2(2\kappa_0^2 - 1)}p^2 + \dots \end{split}$$

WHAT HAS HAPPENED?

- We have taken a model in which the fixed point is under large-N control
- Fixing the charge results in spontaneous symmetry breaking
- The order parameter is a composite field (Cooper pair)
- We compute the conformal dimension of the lowest operator of charge Q
- We find a result in total agreement with the general EFT construction

THE GROSS—NEVEU—YUKAWA MODEL

Now for the Gross-Neveu-Yukawa model. Integrating out the Matsubara frequencies we find

$$\frac{\Omega}{N} = -2 \int \frac{d^2 p}{(2\pi)^2} \left\{ \omega_p + \frac{1}{\beta} \log \left(1 + e^{-\beta(\omega_p + \mu)} \right) + (\mu \leftrightarrow -\mu) \right\},$$

with $\omega_p^2 = p^2 + \sigma_0^2$. The gap equation is

$$\sigma_0 - \frac{1}{\beta} \log \left((1 + e^{\beta(\sigma_0 + \mu)})(1 + e^{\beta(\sigma_0 - \mu)}) \right) = 0$$

and admits only the solution $\sigma_0 = 0$. In other words, in the large-N limit the symmetry is never broken. This is **different** from the superfluid EFT behavior.

THE GROSS—NEVEU—YUKAWA MODEL

We can repeat the computation on the sphere. The grand potential is

$$\frac{\Omega}{N} = -\frac{1}{2\pi r_0^2} \left[\sum_{\omega_j > \mu} (2j+1)\omega_j + \mu \sum_{\omega_j < \mu} (2j+1) \right]$$

the solution to the gap equation and the Legendre transform are

$$\frac{Q}{N} = \frac{1}{2\pi r_0^2} \lfloor \mu r_0 \rfloor (\lfloor \mu r_0 \rfloor + 1), \qquad \frac{E}{N} = \frac{1}{6\pi r_0^3} \lfloor \mu r_0 \rfloor (\lfloor \mu r_0 \rfloor + 1)(2\lfloor \mu r_0 \rfloor + 1).$$

This is the physics of a Fermi sphere.

However, the behavior of the conformal dimension is still the same

$$\Delta = \frac{2}{3} \left(\frac{Q}{2N}\right)^{3/2} + \frac{1}{12} \left(\frac{Q}{2N}\right)^{1/2} - \frac{1}{192} \left(\frac{Q}{2N}\right)^{-1/2} + \dots$$

WHAT HAS HAPPENED?

- We have taken a model in which the fixed point is under large-N control
- Fixing the charge does not result in spontaneous symmetry breaking
- The physics is the one of a Fermi sphere
- The dimension of the lowest operator still obeys the same law
- Conundrum: is this a large-N effect or is there a finite-N transition?

RESURGENCE AND THE LARGE CHARGE

O(2N) at criticality in 1 + 2 dimensions on $\mathbb{R} \times \Sigma$. Double-scaling limit $N \to \infty$, $Q \to \infty$ with $\hat{q} = Q/(2N)$ fixed.

$$\begin{cases} \mathsf{F}_{\Sigma}^{\mathfrak{M}}(\Omega) = \mu \Omega + \mathsf{N}\zeta(-\frac{1}{2}\big|\Sigma,\mu),\\ \mu\zeta(\frac{1}{2}\big|\Sigma,\mu) = -\frac{\Omega}{\mathsf{N}}. \end{cases}$$

O(2N) at criticality in 1 + 2 dimensions on $\mathbb{R} \times \Sigma$. Double-scaling limit $N \to \infty$, $Q \to \infty$ with $\hat{q} = Q/(2N)$ fixed. The free energy per DOF $f(\hat{q}) = F/(2N)$ is

$$f(\hat{q}) = \sup_{\mu} (\mu \hat{q} - \omega(\mu)), \qquad \qquad \omega(\mu) = -\frac{1}{2} \zeta(-\frac{1}{2} | \Sigma, \mu),$$

O(2N) at criticality in 1 + 2 dimensions on $\mathbb{R} \times \Sigma$. Double-scaling limit $N \to \infty$, $Q \to \infty$ with $\hat{q} = Q/(2N)$ fixed. The free energy per DOF $f(\hat{q}) = F/(2N)$ is

$$f(\hat{q}) = \sup_{\mu} (\mu \hat{q} - \omega(\mu)), \qquad \qquad \omega(\mu) = -\frac{1}{2} \zeta(-\frac{1}{2} | \Sigma, \mu),$$

 $\zeta(s|\Sigma,\mu)$ is the zeta function for the operator - $\bigtriangleup + \mu^2.$ In Mellin representation

$$\zeta(s|\Sigma,\mu) = \frac{1}{\Gamma(s)} \int_0^\infty \frac{dt}{t} t^s e^{-\mu^2 t} \, \text{Tr} \Big(e^{\bigtriangleup t} \Big).$$

O(2N) at criticality in 1 + 2 dimensions on $\mathbb{R} \times \Sigma$. Double-scaling limit $N \to \infty$, $Q \to \infty$ with $\hat{q} = Q/(2N)$ fixed. The free energy per DOF $f(\hat{q}) = F/(2N)$ is

$$f(\hat{q}) = \sup_{\mu} (\mu \hat{q} - \omega(\mu)), \qquad \qquad \omega(\mu) = -\frac{1}{2} \zeta(-\frac{1}{2} | \Sigma, \mu),$$

 $\zeta(s|\Sigma,\mu)$ is the zeta function for the operator - $\bigtriangleup + \mu^2.$ In Mellin representation

$$\zeta(s|\Sigma,\mu) = \frac{1}{\Gamma(s)} \int_0^\infty \frac{dt}{t} t^s e^{-\mu^2 t} \, \text{Tr} \Big(e^{\bigtriangleup t} \Big).$$

Large \hat{q} is large μ and is small t. The classical Seeley-de Witt problem:

$$\operatorname{Tr}(e^{\bigtriangleup t}) \sim \frac{V}{4\pi t} \left(1 + \frac{R}{12}t + ...\right).$$

THE TORUS

As a warm-up: $\Sigma = T^2$.

$$\text{spec}(\triangle) = \left\{ -\frac{4\pi^2}{L^2} \left(k_1^2 + k_2^2 \right) \mid k_1, k_2 \in \mathbb{Z} \right\}.$$

It follows that the heat kernel trace is the square of a theta function:

$$Tr(e^{\triangle t}) = \sum_{k_1, k_2 \in \mathbb{Z}} e^{-\frac{4n^2}{L^2}(k_1^2 + k_2^2)t} = \left[\theta_3(0, e^{-\frac{4n^2t}{L^2}})\right]^2.$$

We are interested in the small-t limit: we Poisson-resum the series:

$$\mathsf{Tr}\left(e^{\triangle t}\right) = \left[\frac{\mathsf{L}}{\sqrt{4\mathsf{n}\mathsf{t}}}\left(1 + \sum_{\mathsf{k}\in\mathbb{Z}} e^{-\frac{\mathsf{k}^{2}\mathsf{L}^{2}}{4\mathsf{t}}}\right)\right]^{2} = \frac{\mathsf{L}^{2}}{4\mathsf{n}\mathsf{t}}\left(1 + \sum_{\mathsf{k}\in\mathbb{Z}^{2}} e^{-\frac{||\mathsf{k}||^{2}\mathsf{L}^{2}}{4\mathsf{t}}}\right)^{2}$$

THE TORUS

Grand potential

$$\omega(\mu) = -\frac{1}{2}\zeta(-\frac{1}{2}|T^2,\mu) = \frac{L^2\mu^3}{12\pi} \left(1 + \sum_k \frac{e^{-||k||\mu L}}{||k||^2\mu^2 L^2} \left(1 + \frac{1}{||k||\mu L}\right)\right).$$

Free energy

$$f(\hat{q}) = \sup_{\mu} (\mu \hat{q} - \omega(\mu)) = \frac{4\sqrt{\pi}}{3L} \hat{q}^{3/2} \left(1 - \sum_{k} \frac{e^{-\|k\| \sqrt{4\pi \hat{q}}}}{8\|k\|^2 \pi \hat{q}} + ... \right).$$

- perturbative expansion in μ (here a single term) plus exponentially suppressed terms controlled by the dimensionless parameter μL
- the free energy is written as a double expansion in the two parameters $1/\hat{q}$ and $e^{-\sqrt{4n\hat{q}}}.$
- non-perturbative effects more important than the "usual" instantons $\mathcal{O}(e^{-\hat{q}})$

On the two sphere spec(\triangle) = {- $\ell(\ell + 1) \mid \ell \in \mathbb{N}_0$ } with multiplicity $2\ell + 1$.

Again, we use Poisson resummation

$$\mathsf{Tr}\Big(e^{\triangle t}\Big)e^{-t/4} = \sum_{\ell \ge 0} (2\ell+1)e^{-(\ell+1/2)^2 t} \sim \frac{1}{t}\sum_{n=0}^{\infty} \frac{(-1)^{n+1}(1-2^{1-2n})}{n!}\mathsf{B}_{2n}t^n$$

The series is asymptotic: the Seeley-de Witt coefficients diverge like n!:

$$a_{n} = \frac{(-1)^{n+1}(1-2^{1-2n})}{n!}B_{2n} \sim \frac{2n^{1/2}}{n^{5/2+2n}}n!.$$

this divergence is reflected in the existence of non-perturbative corrections.

BOREL RESUMMATION

BOREL TRANSFORM

We need to make sense of the divergent series and the imaginary terms.

LATERAL TRANSFORM

If there are poles on the real positive axis there is an ambiguity

Т

$$s_{\pm}(H)(t) = s(H)(t) = \int_{\mathcal{C}_{\pm}} w^{b} e^{-w} \hat{H}(tw^{\beta}) \frac{dw}{w}$$

$$s_+(H) - s_-(H) = (2\pi i) \sum_k residue$$

We need an independent definition of the non-perturbative effects to cancel the imaginary ambiguity.

MORE INGREDIENTS

WORLDLINE INTERPRETATION

We need a **non-perturbative interpretation** of these exponential terms.

We read the heat kernel as the partition function of a particle at inverse temperature t and Hamiltonian $H = -\partial_0^2 - \triangle$, i.e. a free quantum particle moving on $\mathbb{R} \times \Sigma$.

We can write the partition function as a path integral

$$Tr\left(e^{(\partial_0^2 + \triangle)t}\right) = \mathcal{N} \int_{X(1) = X(0)} \mathcal{D}X e^{-S[X]}$$

where the action is

$$S[X] = \frac{1}{4t} \int_0^1 d\tau \, g_{\mu\nu} \dot{X}^{\mu}(\tau) \dot{X}^{\nu}(\tau)$$

A TRANSSERIES FROM GEODESICS

In the limit $t \to 0$ the path integral localizes on a sum over all the closed geodesics $\gamma.$

For each geodesic a perturbative series in t, weighted by $e^{-\ell(\gamma)^2/(4t)}$

$$\begin{split} \mathsf{Tr} \Big(e^{(\partial_0^2 + \bigtriangleup) t} \Big) &= \mathcal{N} \int\limits_{X(1) = X(0)} \mathcal{D} X \, e^{-S[X]} \\ &= t^{-b_0} \sum_{n=0}^{\infty} a_n^{(0)} t^n + \sum_{\gamma \, \in \, \text{closed geodesics}} e^{-\frac{\ell(\gamma)^2}{4t}} t^{-b_\gamma} \sum_{n=0}^{\infty} a_n^{(\gamma)} t^n, \end{split}$$

the $\boldsymbol{b}_{\boldsymbol{\gamma}}$ depend on the geometry.

This is precisely the same structure predicted by resurgence.

Now we have a geometric interpretation.

THE TORUS

In the case of the torus, closed geodesics are labelled by two integers (k_1, k_2)

The integral is quadratic and the fluctuations around each geodesic give the usual

$$\mathcal{N} \int_{\substack{h(1)=h^{(0)}=0}} \mathcal{D}h \, e^{-\frac{1}{4t} \int_{0}^{1} d\tau (\dot{h}^{1})^{2} + (\dot{h}^{2})^{2}} = \mathcal{N} \det \left(\frac{1}{4t} \, \partial_{\tau}^{2}\right)^{-1} = \frac{1}{4\pi t}.$$

THE TORUS

Now we can write the result of the path integral

$$\begin{split} \mathsf{Tr} \Big(e^{\triangle t} \Big) &= \mathcal{N} \int_{X(1) = X(0)} \mathcal{D} X \, e^{-S[X]} = \mathcal{N} L^2 \sum_{X_{cl} h(1) = h(0) = 0} \int_{R(2)} e^{-S[X_{cl}] - S[h]} \\ &= \mathcal{N} L^2 \sum_{k \in \mathbb{Z}^2} e^{-\frac{L^2(k_1^2 + k_2^2)}{4t}} \int_{h(1) = h(0) = 0} \mathcal{D} h \, e^{-S[h]}, \\ &= \frac{L^2}{4\pi t} \Bigg[1 + \sum_{k \in \mathbb{Z}^2} e^{-\frac{L^2 ||k||^2}{4t}} \Bigg] \end{split}$$

This is exactly what we had found before just by looking at the spectrum. Now we can understand the non-perturbative effects in terms of closed geodesics.

Closed geodesics on the sphere go around the equator k times

Closed geodesics on the sphere go around the equator k times

We need to sum over the fluctuations h_ϕ and h_θ

Closed geodesics on the sphere go around the equator k times

We need to sum over the fluctuations h_ϕ and h_θ

There is a zero mode because we can rotate the equator

Closed geodesics on the sphere go around the equator k times

We need to sum over the fluctuations h_ϕ and h_θ

There is a zero mode because we can rotate the equator

And an instability because we can slide off

BACK TO RESURGENCE

Putting it all together, the non-trivial geodesics give

$$\pm 2i \bigg(\frac{\pi}{t}\bigg)^{3/2} \sum_{k \in \mathbb{Z}} |k| e^{-\frac{k^2 \pi^2}{t}}$$

The one-loop result perfectly cancels the imaginary ambiguity of the Borel sum!

$$Tr\left(e^{(\triangle -\frac{1}{4})t}\right) = s_{\pm}(H)(t) \mp 2i\left(\frac{n}{t}\right)^{3/2} \sum_{k \ge 1} (-1)^{k} k e^{-\frac{k^{2}n^{2}}{t}} = Re[s_{\pm}(H)(t)]$$

BACK TO RESURGENCE

We can write the **exact expression** for the grand potential ($m^2 = \mu^2 + 1/4$):

$$\omega(\mu) = \operatorname{Re}\left[\frac{2\operatorname{rm}^2}{\pi}\int_0^\infty dy \, \frac{\operatorname{K}_2(2\operatorname{mry})}{y\sin(y)}\right] = \frac{r^2}{3}\operatorname{m}^3 - \frac{m}{24} + \dots - \frac{2\operatorname{ir}^{1/2}\operatorname{m}^{3/2}}{(4\pi)^{3/2}}\operatorname{e}^{-2\pi\operatorname{rm}} + \dots$$

BACK TO RESURGENCE

We can write the **exact expression** for the grand potential ($m^2 = \mu^2 + 1/4$):

$$\omega(\mu) = \operatorname{Re}\left[\frac{2\operatorname{rm}^2}{\pi}\int_0^\infty dy \, \frac{\operatorname{K}_2(2\operatorname{mry})}{y\sin(y)}\right] = \frac{r^2}{3}\operatorname{m}^3 - \frac{m}{24} + \dots - \frac{2\operatorname{ir}^{1/2}\operatorname{m}^{3/2}}{(4\pi)^{3/2}} \operatorname{e}^{-2\pi\operatorname{rm}} + \dots$$

As a numerical test, we can compare with the convergent small-charge expansion ($\hat{q}\approx 0.6)$

$$r\omega(mr = 0.4) \bigg|_{small charge} = 0.01277729663...$$
$$r\omega(mr = 0.4) \bigg|_{resurgence} = 0.01277729769...$$

OPTIMAL TRUNCATION

LESSONS FROM LARGE N

Let's go back to the EFT. The effective action is identified with the asymptotic expansion: the grand potential is the value of the action at the minimum $\chi = \mu t$:

$$\omega(\mu) = L_{EFT} \bigg|_{\chi=\mu t}$$

where

$$L_{\text{EFT}} = \omega_0 \left(\partial_\mu \chi \, \partial^\mu \chi \right)^{3/2} + \omega_1 \left(\partial_\mu \chi \, \partial^\mu \chi \right)^{1/2} + ...,$$

In general the coefficients are unknown

BUT

Now we have a geometric understanding of the non-perturbative effects

LESSONS FROM LARGE N

Assume:

- 1. the large-charge expansion is asymptotic;
- 2. the leading pole in the Borel plane is a particle of mass μ going around the equator.

A CFT has no intrinsic scales.

The only dimensionful parameter is due to the fixed charge density.

The conformal dimension is a transseries

$$\begin{split} \Delta(Q) &= Q^{3/2} \sum_{n \geq 0} f_n^{(0)} \frac{1}{Q^n} + C_1 Q^{b_1} e^{-3\pi \kappa f_0^{(0)} \sqrt{Q}} \sum_{n \geq 0} f_n^{(1)} \frac{1}{Q^{n/2}} + ... \end{split}$$
 (we used $\mu = 3f_0^{(0)} \sqrt{Q}/2 +)$
LESSONS FROM LARGE N

Assume:

- 1. the large-charge expansion is asymptotic;
- 2. the leading pole in the Borel plane is a particle of mass µ going around the equator.

A CFT has no intrinsic scales.

The only dimensionful parameter is due to the fixed charge density.

The conformal dimension is a transserv

$$\Delta(Q) = Q^{3/2} \sum_{n \ge 0} f_n^{(0)} \frac{1}{Q^n} + C_1 Q^{b_1} e^{-3\pi \kappa f_0^{(0)} \sqrt{Q}} \sum_{n \ge 0} f_n^{(1)} \frac{1}{Q^{n/2}} + \dots$$

(we used μ = 3f_0^{(0)} $\sqrt{Q}/2$ +)

LESSONS FROM LARGE N

- The controlling parameter for the non-perturbative effects $e^{-3\pi\kappa f_0^{(0)}\sqrt{Q}}$ is fixed by the leading term in the 1/Q expansion.
- The non-perturbative coefficient $e^{-3\pi\kappa f_0^{(0)}\sqrt{Q}}$ fixes the large-n behavior of the perturbative series $f_n^{(0)}$.

 $f_n^{(0)} \thicksim (2n)! (3\pi \kappa f_0^{(0)})^{\text{-n}}$

We don't know enough for a Borel resummation, but we can estimate an optimal trucation (the value of n where $f_n^{(0)} Q^{-n}$ is minimal)

$$N^* \approx \frac{3\pi \kappa f_0^{(0)}}{2} Q^{1/2}$$

corresponding to an error of order $\epsilon(Q) = \mathcal{O}\left(e^{-\sqrt{Q}}\right)$

CAN WE UNDERSTAND THE LATTICE RESULTS NOW?

Lattice:

Best fit with N = 3 terms. At Q = 1 the error is $\approx 6 \times 10^{-2}$; at Q = 11 the error is $\approx 5 \times 10^{-5}$.

Resurgence:

$$\sqrt{10} \approx 3.16$$

e⁻ⁿ $\approx 4 \times 10^{-2}$ and e^{-n $\sqrt{11}$} = 3 × 10⁻⁵.

WHAT HAS HAPPENED?

- The large-charge expansion of the Wilson-Fisher point is asymptotic
- In the double-scaling limit $Q \to \infty, \, N \to \infty$ we control the perturbative expansion
- We can **Borel**-resum the expansion
- We have a geometric interpretation for the non-perturbative effects
- We can use this geometric interpretation also in the finite-N case
- We obtain an optimal truncation and estimate of the error
- The results are consistent with lattice simulations

CONCLUSIONS

- With the large-charge approach we can study **strongly-coupled systems perturbatively**.
- Select a sector and we write a **controllable effective theory**.
- The strongly-coupled physics is (for the most part) subsumed in a **semiclassical state**.
- Precise and testable predictions.
- Qual(nt)itative control of the non-pertubative effects.
- CFT constraints: perturbative/non-perturbative interplay.
- Remarkable agreement with lattice.

AN EFT FOR A CFT

THE O(2) MODEL

The simplest example is the WF point of the O(2) model in three dimensions.

- Non-trivial fixed point of the ϕ^4 action

$$L_{UV} = \partial_{\mu} \phi^{*} \partial_{\mu} \phi - u(\phi^{*} \phi)^{2}$$

- Strongly coupled
- In nature: ⁴He.
- Simplest example of spontaneous symmetry breaking.
- Not accessible in perturbation theory. Not accessible in 4 ε. Not accessible in large N.
- Lattice. Bootstrap.

CHARGE FIXING

We consider a subsector of fixed charge Q. Generically, the classical solution at fixed charge breaks spontaneously $U(1) \to \emptyset.$

We have one **Goldstone boson** χ .

AN ACTION FOR $\boldsymbol{\chi}$

Start with two derivatives:

$$L[\chi] = \frac{f_{\pi}}{2} \partial_{\mu} \chi \partial_{\mu} \chi - C^{3}$$

(χ is a Goldstone so it is dimensionless.)

AN ACTION FOR χ

Start with two derivatives:

$$L[\chi] = \frac{f_{\pi}}{2} \partial_{\mu} \chi \partial_{\mu} \chi - C^3$$

(χ is a Goldstone so it is dimensionless.)

We want to describe a CFT: we can dress with a dilaton

$$L[\sigma, \chi] = \frac{f_{\pi} e^{-2f\sigma}}{2} \partial_{\mu} \chi \partial_{\mu} \chi - e^{-6f\sigma} C^{3} + \frac{e^{-2f\sigma}}{2} \left(\partial_{\mu} \sigma \partial_{\mu} \sigma - \frac{\xi R}{f^{2}} \right)$$

The fluctuations of χ give the Goldstone for the broken U(1), the fluctuations of σ give the (massive) Goldstone for the broken conformal invariance.

LINEAR SIGMA MODEL

We can put together the two fields as

 $\Sigma = \sigma + i f_{\Pi} \chi$

and rewrite the action in terms of a complex scalar

$$\phi = \frac{1}{\sqrt{2f}} e^{-f\Sigma}$$

We get

$$L[\phi] = \partial_{\mu}\phi^{*}\partial^{\mu}\phi - \xi R\phi^{*}\phi - u(\phi^{*}\phi)^{3}$$

Only depends on dimensionless quantities $b = f^2 f_{\pi}$ and $u = 3(Cf^2)^3$. Scale invariance is manifest.

The field ϕ is some complicated function of the original $\phi.$

CENTRIFUGAL BARRIER

The O(2) symmetry acts as a shift on $\boldsymbol{\chi}.$

Fixing the charge is the same as adding a centrifugal term $\propto \frac{1}{|\phi|^2}$.

GROUND STATE

We can find a fixed-charge solution of the type

$$\chi(t,x)=\mu t \qquad \qquad \sigma(t,x)=\frac{1}{f}\log(v)=\text{const.},$$

where

$$\mu \propto Q^{1/2} + \dots \qquad \qquad v \propto \frac{1}{Q^{1/2}}$$

The classical energy is

$$E = c_{3/2} / \sqrt{V} Q^{3/2} + c_{1/2} R \sqrt{V} Q^{1/2} + \mathcal{O}(Q^{-1/2})$$

FLUCTUATIONS

The fluctuations over this ground state are described by two modes.

• A universal "conformal Goldstone". It comes from the breaking of the U(1).

$$\omega = \frac{1}{\sqrt{2}}p$$

• The massive dilaton. It controls the magnitude of the quantum fluctuations. All quantum effects are controled by 1/Q.

$$\omega = 2\mu + \frac{p^2}{2\mu}$$

(This is a heavy fluctuation around the semiclassical state. It has nothing to do with a light dilaton in the full theory)

NON-LINEAR SIGMA MODEL

Since σ is heavy we can integrate it out and write a non-linear sigma model (NLSM) for χ alone.

$$L[\chi] = k_{3/2} (\partial_{\mu} \chi \partial^{\mu} \chi)^{3/2} + k_{1/2} R (\partial_{\mu} \chi \partial^{\mu} \chi)^{1/2} + \dots$$

These are the leading terms in the expansion around the classical solution $\chi = \mu t$. All other terms are suppressed by powers of 1/Q.

In 3 + 1 NRCFT the analogous story in a background potential A_0 leads to

$$L[\chi] = c_0 U^{5/2} + c_1 U^{-1/2} \partial_i U \partial_i U + c_2 U^{1/2} ((\partial_i \partial_i \chi)^2 - 9 \partial_i \partial_i A_0) + \dots$$
(1)

where $U = \partial_t \chi - A_0 \chi - \partial_i \chi \partial_i \chi/2$.

STATE-OPERATOR CORRESPONDENCE

Protected by conformal invariance: a well-defined quantity.

NRCFT STATE-OPERATOR CORRESPONDENCE

The anomalous dimension on \mathbb{R}^d is the energy in a harmonic trap.

Protected by conformal invariance: a well-defined quantity.

CONFORMAL DIMENSIONS We know the energy of the ground state.

The leading quantum effect is the Casimir energy of the conformal Goldstone.

$$\mathsf{E}_{\mathsf{G}} = \frac{1}{2\sqrt{2}} \zeta(-\frac{1}{2} | \mathsf{S}^2) = -0.0937..$$

This is the unique contribution of order Q^0 .

Final result: the conformal dimension of the lowest operator of charge Q in the O(2) model has the form

$$\Delta_{\mathbf{Q}} = \frac{c_{3/2}}{2\sqrt{n}} \mathbf{Q}^{3/2} + 2\sqrt{n}c_{1/2}\mathbf{Q}^{1/2} - 0.094... + \mathcal{O}(\mathbf{Q}^{-1/2})$$

In 3 + 1 NRCFT we find

$$\Delta_{\mathbf{Q}} = c_{4/3} \mathbf{Q}^{4/3} + c_{2/3} \mathbf{Q}^{2/3} + b_{5/9} \mathbf{Q}^{5/9} + b_{1/3} \mathbf{Q}^{1/3} + b_{1/9} \mathbf{Q}^{1/9} - \frac{1}{3\sqrt{3}} \log(\mathbf{Q}) + c_0$$

WHAT HAPPENED?

We started from a CFT.

There is no mass gap, there are **no particles**, there is **no Lagrangian**.

We picked a sector.

In this sector the physics is described by a **semiclassical configuration** plus massless fluctuations.

The full theory has no small parameters but we can study this sector with a simple EFT.

We are in a **strongly coupled** regime but we can compute physical observables using **perturbation theory**.

ORDER N°

The order N^0 terms are

$$\begin{split} S^{\theta}[\hat{\sigma},\hat{\lambda}] &= \int dt \, d\Sigma \left((D_{\mu}\hat{\sigma})^{*} (D^{\mu}\hat{\sigma}) + (\mu^{2}+\hat{\lambda})\hat{\sigma}^{*}\hat{\sigma} + \frac{\hat{\lambda}v(\hat{\sigma}+\hat{\sigma}^{*})}{(N-1)^{1/2}} \right) \\ &+ \frac{1}{2} \int dx_{1} \, dx_{2} \, \hat{\lambda}(x_{1})\hat{\lambda}(x_{2}) D(x_{1}-x_{2})^{2} \end{split}$$

where D(x - y) is the propagator $(D_{\mu}D^{\mu} + m^2)^{-1}$.

At low energies we can approximate the non-local term as

$$dt \, d\Sigma \, \hat{\lambda}(x)^2 \zeta(2 | \theta, \Sigma, \mu) \approx \frac{V}{2 \mu} \int dt \, d\Sigma \, \hat{\lambda}(x)^2$$

and we can integrate $\hat{\lambda}$ out.

ORDER N°

The inverse propagator for $\boldsymbol{\sigma}$ is

$$\begin{pmatrix} 1/2(\omega^2 + p^2 + 4\mu^2) & \mu\omega \\ -\mu\omega & 1/2(\omega^2 + p^2) \end{pmatrix}$$

It describes a massive mode and a massless mode with dispersion

$$\omega^{2} + \frac{1}{2}p^{2} + \dots = 0 \qquad \qquad \omega^{2} + 8\mu^{2} + \frac{3}{2}p^{2} + \dots = 0$$

This is the conformal Goldstone that we have seen in the EFT. Its contribution to the partition function is

$$\mathsf{E}_{\mathsf{G}} = \frac{1}{2} \frac{1}{\sqrt{2}} \zeta(1/2|\mathsf{S}^2) = -0.0937...$$

This is **universal**. Does not depend on N or Q.

HIGHER ORDERS

There are infinite non-local terms

$$S_{nI} = \sum_{n=3}^{\infty} \frac{1}{n(N-1)^{n/2-1}} \int dx_1 \dots dx_n \,\hat{\lambda}(x_1) \dots \hat{\lambda}(x_n) P(x_1, \dots, x_n)$$

At low energy they are approximated by

$$S_{nl} = \sum_{n=3}^{\infty} \frac{1}{n(N-1)^{n/2-1}} \int dx \hat{\lambda}(x)^{n} C_{n}$$

HIGHER ORDERS

There is only one scale, the charge density $\rho = Q/V$. We must have

$$C_n = \rho^{3/2 - n} C_n$$

So

$$S_{nl} = Q^{3/2} \sum_{n=3}^{\infty} \frac{C_n}{n(N-1)^{n/2-1}} \int dx \bar{\lambda}(x)^n$$

Infinite corrections of order $Q^{3/2}$ (and following), controlled by 1/N.