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WHY ARE WE HERE? CONFORMAL FIELD THEORIES

extrema of the RG flow critical phenomena
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WHY ARE WE HERE? CONFORMAL FIELD THEORIES ARE HARD

Most conformal field theories (CFTs) lack nice limits

where they become simple and solvable.

No parameter of the theory can be dialed to a

simplifying limit.
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WHY ARE WE HERE? CONFORMAL FIELD THEORIES ARE HARD

In presence of a symmetry there can be sectors of the theory

where anomalous dimension and OPE coefficients simplify.
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THE IDEA

Study subsectors of the theory with fixed quantum numberQ.

In each sector, a largeQ is the controlling parameter

in a perturbative expansion.
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NOT AN ORIGINAL IDEA
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NO BOOTSTRAP HERE!

This approach is orthogonal to

bootstrap.

We will use an effective action.

We will access sectors that are difficult

to reach with bootstrap.

(However, arXiv:1710.11161).

https://arxiv.org/abs/1710.11161
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CONCLUSIONS

We consider theO(N) vector model in three dimensions. In the IR it flows to a

conformal fixed point [Wilson & Fisher].

We find an explicit formula for the dimension of the lowest primary at fixed

charge:

ΔQ =
c3/2
2
√
π
Q3/2 + 2

√
πc1/2Q

1/2 – 0.094 +O(Q–1/2)
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CONCLUSIONS: O(2)
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SCALES

We want to write aWilsonian effective action.

Choose a cutoff Λ, separate the fields into high and low

frequency φH , φL and do the path integral over the

high-frequency part:

eiSΛ(φL)= ∫DφH eiS(φH ,φL)
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SCALES

• We look at a finite box of typical length R

• The U(1) chargeQ fixes a second scale ρ1/2 ~ Q1/2/R

1

R
� Λ� ρ1/2 ~

Q1/2

R
� ΛUV

For Λ� ρ1/2 the effective action is weakly coupled and

under perturbative control in powers of ρ–1 .
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NON-LINEAR SIGMA MODEL

In a generic theory™, picking the lowest state of fixed charge induces a

spontaneous symmetry breaking.

The low-energy physics is described by a Goldstone field χ.

Using conformal invariance, the most general action must take the form

L[χ] = k3/2(∂μχ ∂μχ)3/2 + k1/2R(∂μχ ∂μχ)1/2 +…

These are the leading terms in the expansion around the classical solution

χ = μt. All other terms are suppressed by powers of 1/Q.



14

NON-LINEAR SIGMA MODEL

The energy of the lowest state for this action has the form

E =
c3/2√
V
Q3/2 + R

√
VQ1/2 +…

The leading quantum effect is the Casimir energy of the conformal Goldstone.

EG =
1

2
√
2
ζ(–1

2
|S2) = –0.0937…

This is the unique contribution of orderQ0 .
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STATE-OPERATOR CORRESPONDENCE
The anomalous dimension on Rd is the energy in the cylinder frame.

ΔSd–1

Rd

H

R × Sd–1

Sd–1

Protected by conformal invariance: a well-defined quantity.
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TOO GOOD TO BE TRUE?

 0

 2

 4

 6

 8

 10

 12

 14

 2  4  6  8  10

D
(Q

)

Q

MC data
fit 



17

TOO GOOD TO BE TRUE?
Think of Regge trajectories.

The prediction of the theory is

m2 ∝ J(1 +O(J–1))
but experimentally everything

works so well at small J that String

Theory was invented.

FIG. 2. The (n, M2)-trajectories for the states a0(10++), a2(12++) and a4(14++) with a) µ2 = 1.38 GeV2 and b) µ2 = 1.10
GeV2; Two variants for the f2(02

++)-trajectories with the slope parameter c) µ2 = 1.38 GeV2 and d) µ2 = 1.10 GeV2. The
f0(00

++)-trajectories for e) real resonance states and f) K-matrix pole states. As in Fig. 1, the open circles stand for states
predicted by the present classification.

5
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SELECTED TOPICS IN THE LARGE CHARGE EXPANSION
• O(2) model [Hellerman, DO, Reffert, Watanabe] [Monin, Pirtskhalava, Rattazzi, Seibold]

• fermions [Komargodski, Mezei, Pal, Raviv-Moshe] [Antipin, Bersini, Panopoulos]

[Hellerman, Dondi, Kalogerakis, Moser, DO, Reffert]

• holography [Nakayama] [Loukas, DO, Reffert, Sarkar] [de la Fuente]

[Guo, Liu, Lu, Pang] [Giombi, Komatsu, Offertaler]

• large N [Álvarez-Gaumé, DO, Reffert] [Giombi, Hyman]

• ε double-scaling [Badel, Cuomo, Monin, Rattazzi]

[Arias-Tamargo, Rodriguez-Gomez, Russo]

[Antipin, Bersini, Sannino, Wang, Zhang] [Jack, Jones]

• non-relativistic CFTs [Kravec, Pal] [Hellerman, Swanson] [Favrod, DO, Reffert]

[DO, Reffert, Pellizzani]

[Hellerman, DO, Reffert, Pellizzani, Swanson]

• N = 2 [Hellerman, Maeda] [Hellerman, Maeda, DO, Reffert, Watanabe]

[Bourget, Rodriguez-Gomez, Russo] [Grassi, Komargodski, Tizzano]

[Cremonesi, Lanza, Martucci]

• bootstrap [Jafferis, Zhiboedov]

• resurgence [Dondi, Kalogerakis, DO, Reffert] [Antipin, Bersini, Sannino, Torres]

[Watanabe]



WHAT HAPPENED?

We started from a CFT.

There is no mass gap, there are no particles, there is no Lagrangian.

We picked a sector.

In this sector the physics is described by a semiclassical configuration plus

massless fluctuations.

The full theory has no small parameters but we can study this sector with a

simple effective field theory (EFT).

We are in a strongly coupled regime but we can compute physical observables

using perturbation theory.



TODAY'S TALK

The EFT for theO(2) model in 2 + 1 dimensions

Double Scaling & Supersymmetry
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TODAY'S TALK

The EFT for theO(2) model in 2 + 1 dimensions

• An EFT for a CFT.

• The physics at the saddle.

• State/operator correspondence for anomalous dimensions.

Double Scaling & Supersymmetry



TODAY'S TALK

The EFT for theO(2) model in 2 + 1 dimensions

Double Scaling & Supersymmetry

• Large N

• N = 2 SQCD in four dimensions





AN EFT FOR A CFT



THE O(2) MODEL

The simplest example is the Wilson–Fisher (WF) point of theO(2) model in
three dimensions.

• Non-trivial fixed point of the φ4 action

LUV = ∂μφ
* ∂μφ – u(φ*φ)2

• Strongly coupled

• In nature: 4He.

• Simplest example of spontaneous symmetry breaking.

• Not accessible in perturbation theory. Not accessible in 4 – ε. Not

accessible in large N.

• Lattice. Bootstrap.



CHARGE FIXING

We consider a subsector of fixed chargeQ.

Generically, the classical solution at fixed charge breaks spontaneously

U(1) → ∅.

We have one Goldstone boson χ.



AN ACTION FOR χ

Start with two derivatives:

L[χ] = fπ
2
∂μχ ∂μχ – C

3

(χ is a Goldstone so it is dimensionless.)

We want to describe a CFT: we can dress with a dilaton

L[σ, χ] = fπe
–2fσ

2
∂μχ ∂μχ – e

–6fσC3 +
e–2fσ

2 (∂μσ∂μσ – ξRf2 )
The fluctuations of χ give the Goldstone for the broken U(1), the fluctuations of
σ give the (massive) Goldstone for the broken conformal invariance.
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LINEAR SIGMA MODEL
We can put together the two fields as

Σ = σ + ifπχ

and rewrite the action in terms of a complex scalar

φ =
1

√
2f
e–fΣ

We get

L[φ] = ∂μφ* ∂μφ – ξRφ*φ – u(φ*φ)3

Only depends on dimensionless quantities b = f2 fπ and u = 3(Cf2)3 .
Scale invariance is manifest.

The field φ is some complicated function of the original φ.



CENTRIFUGAL BARRIER
TheO(2) symmetry acts as a shift on χ.

Fixing the charge is the same as adding a centrifugal term ∝ 1

|φ|2
.

|φ 2

V

OO

AA

BB



GROUND STATE

We can find a fixed-charge solution of the type

χ(t, x) = μt σ(t, x) = 1

f
log(v) = const.,

where

μ ∝ Q1/2 +… v ∝ 1

Q1/2

The classical energy is

E = c3/2/
√
VQ3/2 + c1/2R

√
VQ1/2 +O(Q–1/2)



FLUCTUATIONS

The fluctuations over this ground state are described by two modes.

• A universal “conformal Goldstone”. It comes from the breaking of the U(1).

ω =
1
√
2
p

• Themassive dilaton. It controls the magnitude of the quantum fluctuations.

All quantum effects are controled by 1/Q.

ω = 2μ +
p2

2μ

(This is a heavy fluctuation around the semiclassical state. It has nothing to

do with a light dilaton in the full theory)



NON-LINEAR SIGMA MODEL
Since σ is heavy we can integrate it out and write a non-linear sigma

model (NLSM) for χ alone.

L[χ] = k3/2(∂μχ ∂μχ)3/2 + k1/2R(∂μχ ∂μχ)1/2 +…

These are the leading terms in the expansion around the classical solution

χ = μt.

All other terms are suppressed by powers of 1/Q.

In 3 + 1 nrcft the analogous story in a background potential A0 leads to

L[χ] = c0U
5/2 + c1U

–1/2 ∂iU ∂iU + c2U
1/2((∂i∂iχ)2 – 9∂i∂iA0) +… (1)

where U = ∂tχ – A0χ – ∂iχ ∂iχ/2.



STATE-OPERATOR CORRESPONDENCE
The anomalous dimension on Rd is the energy in the cylinder frame.

ΔSd–1

Rd

H

R × Sd–1

Sd–1

Protected by conformal invariance: a well-defined quantity.



NRCFT STATE-OPERATOR CORRESPONDENCE
The anomalous dimension on Rd is the energy in a harmonic trap.

Protected by conformal invariance: a well-defined quantity.



CONFORMAL DIMENSIONS
We know the energy of the ground state.

The leading quantum effect is the Casimir energy of the conformal Goldstone.

EG =
1

2
√
2
ζ(–1

2
|S2) = –0.0937…

This is the unique contribution of orderQ0 .

Final result: the conformal dimension of the lowest operator of chargeQ in the

O(2) model has the form

ΔQ =
c3/2
2
√
π
Q3/2 + 2

√
πc1/2Q

1/2 – 0.094… +O(Q–1/2)
In 3 + 1 nrcft we find

ΔQ = c4/3Q
4/3+c2/3Q

2/3+b5/9Q
5/9+b1/3Q

1/3+b1/9Q
1/9–

1

3
√
3
log(Q)+c0



WHAT HAPPENED?
We started from a CFT.

There is no mass gap, there are no particles, there is no Lagrangian.

We picked a sector.

In this sector the physics is described by a semiclassical configuration plus

massless fluctuations.

The full theory has no small parameters but we can study this sector with a

simple EFT.

We are in a strongly coupled regime but we can compute physical observables

using perturbation theory.



DOUBLE SCALING



DOUBLE SCALING

The large-charge expansion works for strongly-coupled systems that are not

otherwise (analytically) accessible.

What if there is another parameter? e.g. large N, small ε?

In a double-scaling limit (Q/N fixed, εQ fixed) the fixed-charge is a refinement

of the theory.

Equivalent to the resummation of all-order Feynman diagrams.



O(N) AT LARGE N
• at small double-scaling parameter, infinite number of Feynman diagrams

Δ(Q) = Q

2
+
2

π2
Q2

N
+
16 (π2 – 12)Q3

9π4N2
+…

• at large double-scaling parameter, large-charge behavior

Δ(Q) = 4N

3 ( Q

2N)3/2 + N

3 ( Q

2N)1/2
–
7N

360( Q

2N)–1/2 – 71N

90720( Q

2N)–3/2 +O(e–√Q/(2N))
• exact result for all values of Q/N (from resurgence)

Leg [Δ(Q)] = 2rm2

π ∫
∞

0

dy
K2(2mry)
y sin(y) =

r2

3
m3–

m

24
+· · ·–2ir

1/2m3/2

(4π)3/2
e–2πrm+…



HOW GOOD IS LARGE N? 9

FIG. 8. The two leading coefficients c3/2 and c1/2 in the large-charge expansion for the O(N) Wilson-Fisher CFT, shown as a function of N .
The dotted lines show the large-N predictions from Ref. [26]. The dark filled circles show the results of this work. The unfilled squares show
the values of the LECs obtained in Refs. [23, 24] for N = 2, 4. We find that the c3/2 prediction is in excellent agreement with lattice MC for
N � 6. However, the subleading coefficient c1/2, while within ⇠ 3� for N � 6, seems to be in mild tension. Regardless, large-N correctly
predicts the qualitative trends for both couplings.

tice O(2) model. Their model was substantially different from
ours, therefore our results provide an independent verification
of their work. As can be seen in Fig. 8, both the leading and
subleading couplings agree within ⇠ 2�. For N = 4, our
technique is quite similar to the one used in Ref. [24], where
the authors also used a qubit O(4) model. While the agreement
is expected, the qubit model used in Ref. [24] differs slightly
from the one used here. In particular, their model allowed a
bond to ‘turn back on itself’, whereas in our model there are
no such ‘double bonds.’ Since we are working at the criticality,
such details are not expected to matter. This is indeed what we
find. In both these cases (N = 2, 4), our results agree with and
improve over the previous results.

Finally, we remark that the next-higher-order coupling c0 is
predicted to have a precise value from the large-charge expan-
sion. However, being higher order, it is very tricky to extract
from the precision obtained in this work. While it would be
quite satisfying to extract the coupling c0 numerically, in this
work, we simply fixed it to the predicted value and let the other
couplings vary.

V. CONCLUSIONS

To explore the validity of the large-charge expansion for the
O(N) WF CFT, we performed lattice MC computations for the
O(N) model at N = 2, 4, 6, 8. In order to avoid a signal-to-
noise ratio problem as we go to higher charges, we used a qubit
O(N) model, which was shown recently to have a second-
order critical point in universality class of the O(N) WF fixed-
point [28]. This model allows for efficient lattice computations

using a worldline formulation with a worm algorithm, and
allows precise extraction of the conformal dimensions up to
Q = 10 and N = 8.

Having computed the conformal dimensions, we then per-
formed a fit to the prediction from the large-charge EFT and
extracted the two leading LECs c3/2 and c1/2. In line with what
the authors of Refs. [23, 24] observed for the N = 2, 4 models,
we find that the large-charge expansion describes the data very
well even for very small Q for larger N as well. This is an
intriguing fact about the large-charge expansion which would
be nice to understand theoretically.

We finally compared our numerical results for the LECs with
a recent prediction from a combined large-charge and large-N
expansion [26]. We find that the large-N prediction for the
leading coefficient c3/2 agrees very well with the numerical
computations already for N � 6. The qualitative trends for
both the leading LECs c3/2, c1/2 are also predicted correctly by
the large-N expansion. However, there seems to be a small ten-
sion between numerical values and large-N for the subleading
coefficient c1/2. This can be either due to the fact that sublead-
ing coefficient is harder to extract numerically and there might
be unresolved systematics, or it could be that we just need to
go to larger N for the subleading coefficient. The authors of
Ref. [26] also note a small puzzle regarding the c1/2 coupling,
which might be related to this issue. This merits further study
and is left for a future publication.
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well even for very small Q for larger N as well. This is an
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We finally compared our numerical results for the LECs with
a recent prediction from a combined large-charge and large-N
expansion [26]. We find that the large-N prediction for the
leading coefficient c3/2 agrees very well with the numerical
computations already for N � 6. The qualitative trends for
both the leading LECs c3/2, c1/2 are also predicted correctly by
the large-N expansion. However, there seems to be a small ten-
sion between numerical values and large-N for the subleading
coefficient c1/2. This can be either due to the fact that sublead-
ing coefficient is harder to extract numerically and there might
be unresolved systematics, or it could be that we just need to
go to larger N for the subleading coefficient. The authors of
Ref. [26] also note a small puzzle regarding the c1/2 coupling,
which might be related to this issue. This merits further study
and is left for a future publication.

[Singh, arXiv:2203.00059]
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SUPERSYMMETRIC MODELS

Systems with eight supercharges (or more) behave differently.

(Ask me about four for a surprise).

The lowest state is BPS, and has dimension proportional to the charge.

What happens when there is a flat direction?

Many known examples of (non-Lagrangian) N ≥ 2 SCFT in four dimensions.

Coulomb branch with a dimension-one moduli space: all the physics is

encoded in a single operator O and every chiral operator is just On .



SUPERSYMMETRIC MODELS
〈
On1 (x1)On2 (x2)Ōn1+n2 (x3)

〉
=

Cn1 ,n2 ,n1+n2

|x1 – x3 |2n1Δ |x2 – x3 |2n2Δ

The OPE of O with itself is regular, so we can set x2 = x1 and the three-point

function is actually a two-point function (Cn1 ,n2 ,n1+n2 is meaningful).

Q = nΔ is the controlling parameter (it’s the R-charge).

Final result:〈
On(x1)Ōn(x2)

〉
= Cn

Γ(nΔ + α + 1)
|x1 – x2 |2nΔ

For SU(2) SQCD (τ is UV coupling, σ is the IR coupling)

Cn =
γ12G

29/2eπ3/2
|λ(σ)|2/3 |1 – λ(σ)|8/3

|η(σ)|8 Im(σ)2
1

(4 Im(τ) + 8/π log(2))2n



COMPARISON WITH LOCALIZATION
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COMPARISON WITH LOCALIZATION
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COMPARISON WITH BOOTSTRAP

For strongly coupled theories one can use bootstrap to place bounds on the

three-point coefficients with n = 1.

This is the worst possible situation for us. And still…



COMPARISON WITH BOOSTRAP
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Taken from arXiv:2006.01847

https://arxiv.org/abs/2006.01847


CONCLUSIONS

• With the large-charge approach we can study strongly-coupled systems

perturbatively.

• Select a sector and we write a controllable effective theory.

• The strongly-coupled physics is (for the most part) subsumed in a

semiclassical state.

• Precise and testable predictions.

• Qual(nt)itative control of the non-pertubative effects.

• CFT constraints: perturbative/non-perturbative interplay.

• Remarkable agreement with lattice.


	Introduction
	Introduction

	The effective theory
	An EFT for a CFT

	Double scaling and Supersymmetry
	Double Scaling

	Conclusions
	Conclusions


