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WHY ARE WE HERE? CONFORMAL FIELD THEORIES

extrema of the RG flow critical phenomena
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WHY ARE WE HERE? CONFORMAL FIELD THEORIES ARE HARD

Most conformal field theories (CFTs) lack nice limits

where they become simple and solvable.

No parameter of the theory can be dialed to a

simplifying limit.
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WHY ARE WE HERE? CONFORMAL FIELD THEORIES ARE HARD

In presence of a symmetry there can be sectors of the theory

where anomalous dimension and OPE coefficients simplify.
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THE IDEA

Study subsectors of the theory with fixed quantum numberQ.

In each sector, a largeQ is the controlling parameter

in a perturbative expansion.
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CONCRETE RESULTS

We consider theO(N) vector model in three dimensions. In the IR it flows to a

conformal fixed point [Wilson & Fisher].

We find an explicit formula for the dimension of the lowest primary at fixed

charge:

ΔQ =
c3/2
2
√
π
Q3/2 + 2

√
πc1/2Q

1/2 – 0.094 +O(Q–1/2)
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SUMMARY OF THE RESULTS: O(2)
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STATE-OPERATOR CORRESPONDENCE
The anomalous dimension on Rd is the energy in the cylinder frame.

ΔSd–1

Rd

H

R × Sd–1

Sd–1

Protected by conformal invariance: a well-defined quantity.
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SCALES

We want to write aWilsonian effective action.

Choose a cutoff Λ, separate the fields into high and low

frequency φH , φL and do the path integral over the

high-frequency part:

eiSΛ(φL)= ∫DφH eiS(φH ,φL)
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SCALES

• We look at a finite box of typical length R

• The U(1) chargeQ fixes a second scale ρ1/2 ~ Q1/2/R

1

R
� Λ� ρ1/2 ~

Q1/2

R
� ΛUV

For Λ� ρ1/2 the effective action is weakly coupled and

under perturbative control in powers of ρ–1 .
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NON-LINEAR SIGMA MODEL
In a generic theory™, picking the lowest state of fixed charge induces a

spontaneous symmetry breaking.

The low-energy physics is described by a Goldstone field χ.

Using conformal invariance, the most general action must take the form

L[χ] = k3/2(∂μχ ∂μχ)3/2 + k1/2R(∂μχ ∂μχ)1/2 +…

These are the leading terms in the expansion around the classical solution

χ = μt. All other terms are suppressed by powers of 1/Q.

The energy of the lowest state for this action is the conformal dimension of the

lowest operator of given chargeQ.
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TOO GOOD TO BE TRUE?
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TOO GOOD TO BE TRUE?
Think of Regge trajectories.

The prediction of the theory is

m2 ∝ J(1 +O(J–1))
but experimentally everything

works so well at small J that String

Theory was invented.

FIG. 2. The (n, M2)-trajectories for the states a0(10++), a2(12++) and a4(14++) with a) µ2 = 1.38 GeV2 and b) µ2 = 1.10
GeV2; Two variants for the f2(02

++)-trajectories with the slope parameter c) µ2 = 1.38 GeV2 and d) µ2 = 1.10 GeV2. The
f0(00

++)-trajectories for e) real resonance states and f) K-matrix pole states. As in Fig. 1, the open circles stand for states
predicted by the present classification.

5
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TOO GOOD TO BE TRUE?

The unreasonable effectiveness

of the large charge expansion.
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[Watanabe]



WHAT HAPPENED?

We started from a CFT.

There is no mass gap, there are no particles, there is no Lagrangian.

We picked a sector.

In this sector the physics is described by a semiclassical configuration plus

massless fluctuations.

The full theory has no small parameters but we can study this sector with a

simple effective field theory (EFT).

We are in a strongly coupled regime but we can compute physical observables

using perturbation theory.



TODAY'S TALK

The EFT for theO(2) model in 2 + 1 dimensions

Justify and prove all my claims from first principles in four-Fermi models
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TODAY'S TALK

The EFT for theO(2) model in 2 + 1 dimensions

• An EFT for a CFT.

• The physics at the saddle.

• State/operator correspondence for anomalous dimensions.

Justify and prove all my claims from first principles in four-Fermi models



TODAY'S TALK

The EFT for theO(2) model in 2 + 1 dimensions

Justify and prove all my claims from first principles in four-Fermi models

• well-defined asymptotic expansion (in the technical sense)

• justify why the expansion works at small charge

• compute the coefficients in the effective action in large-N





AN EFT FOR A CFT



THE O(2) MODEL

The simplest example is the Wilson–Fisher (WF) point of theO(2) model in
three dimensions.

• Non-trivial fixed point of the φ4 action

LUV = ∂μφ
* ∂μφ – u(φ*φ)2

• Strongly coupled

• In nature: 4He.

• Simplest example of spontaneous symmetry breaking.

• Not accessible in perturbation theory. Not accessible in 4 – ε. Not

accessible in large N.

• Lattice. Bootstrap.



CHARGE FIXING

We consider a subsector of fixed chargeQ.

Generically, the classical solution at fixed charge breaks spontaneously

U(1) → ∅.

We have one Goldstone boson χ.



AN ACTION FOR χ

Start with two derivatives:

L[χ] = fπ
2
∂μχ ∂μχ – C

3

(χ is a Goldstone so it is dimensionless.)

We want to describe a CFT: we can dress with a dilaton

L[σ, χ] = fπe
–2fσ

2
∂μχ ∂μχ – e

–6fσC3 +
e–2fσ

2 (∂μσ∂μσ – ξRf2 )
The fluctuations of χ give the Goldstone for the broken U(1), the fluctuations of
σ give the (massive) Goldstone for the broken conformal invariance.
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LINEAR SIGMA MODEL
We can put together the two fields as

Σ = σ + ifπχ

and rewrite the action in terms of a complex scalar

φ =
1

√
2f
e–fΣ

We get

L[φ] = ∂μφ* ∂μφ – ξRφ*φ – u(φ*φ)3

Only depends on dimensionless quantities b = f2 fπ and u = 3(Cf2)3 .
Scale invariance is manifest.

The field φ is some complicated function of the original φ.



CENTRIFUGAL BARRIER
TheO(2) symmetry acts as a shift on χ.

Fixing the charge is the same as adding a centrifugal term ∝ 1

|φ|2
.

|φ 2

V

OO

AA

BB



GROUND STATE

We can find a fixed-charge solution of the type

χ(t, x) = μt σ(t, x) = 1

f
log(v) = const.,

where

μ ∝ Q1/2 +… v ∝ 1

Q1/2

The classical energy is

E = c3/2VQ
3/2 + c1/2RVQ

1/2 +O(Q–1/2)



FLUCTUATIONS

The fluctuations over this ground state are described by two modes.

• A universal “conformal Goldstone”. It comes from the breaking of the U(1).

ω =
1
√
2
p

• Themassive dilaton. It controls the magnitude of the quantum fluctuations.

All quantum effects are controled by 1/Q.

ω = 2μ +
p2

2μ

(This is a heavy fluctuation around the semiclassical state. It has nothing to

do with a light dilaton in the full theory)



NON-LINEAR SIGMA MODEL

Since σ is heavy we can integrate it out and write a non-linear sigma

model (NLSM) for χ alone.

L[χ] = k3/2(∂μχ ∂μχ)3/2 + k1/2R(∂μχ ∂μχ)1/2 +…

These are the leading terms in the expansion around the classical solution

χ = μt.

All other terms are suppressed by powers of 1/Q.



STATE-OPERATOR CORRESPONDENCE
The anomalous dimension on Rd is the energy in the cylinder frame.

ΔSd–1

Rd

H

R × Sd–1

Sd–1

Protected by conformal invariance: a well-defined quantity.



CONFORMAL DIMENSIONS
We know the energy of the ground state.

The leading quantum effect is the Casimir energy of the conformal Goldstone.

EG =
1

2
√
2
ζ(–1

2
|S2) = –0.0937…

This is the unique contribution of orderQ0 .

Final result: the conformal dimension of the lowest operator of chargeQ in the

O(2) model has the form

ΔQ =
c3/2
2
√
π
Q3/2 + 2

√
πc1/2Q

1/2 – 0.094 +O(Q–1/2)



WHAT HAPPENED?
We started from a CFT.

There is no mass gap, there are no particles, there is no Lagrangian.

We picked a sector.

In this sector the physics is described by a semiclassical configuration plus

massless fluctuations.

The full theory has no small parameters but we can study this sector with a

simple EFT.

We are in a strongly coupled regime but we can compute physical observables

using perturbation theory.



LARGE N VS. LARGE CHARGE



GROSS–NEVEU AND NAMBU–JONA–LASINIO
Simplest four-Fermi models

SGN[ψ] = ∫dtdΣ
N

∑
i=1

ψ̄iγ
μ ∂μψi –

g

2N
(ψ̄ψ)2

SNJL[ψ,φ] = ∫dtdΣ
N

∑
i=1

ψ̄iγ
μ ∂μψi –

g

N[(ψ̄ψ)2 – (ψ̄γ5ψ)2]
RespectivelyO(4N) and U(N) × U(1) symmetry.
Non-trivial CFT in the ultraviolet (UV).

Convenient to introduce collective fields

σ =
g

N
ψ̄ψ

φ =
g

N(ψ̄ψ + ψ̄γ5ψ)



GNY AND NJL MODELS AT LARGE N

SGNY[ψ,σ] = ∫dtdΣ
N

∑
i=1

ψ̄i (γμ ∂μ+σ)ψi +
1

2gY
∂μσ∂μσ.

SNJL[ψ,φ] = ∫dtdΣ
N

∑
i=1

ψ̄i [γμ ∂μ+φ (1+γ52 ) + φ* (1–γ52 )]ψi +
1

gY
∂μφ

* ∂μφ

They flow in the IR to the same CFTs.

We want to fix U(1) charges.

ψi → eiαψi ,

ψ→ eiαγ5ψ, φ→ e–2iαφ,

and compute the partition function at fixed charge

Z(Q) = Tr[e–βHδ(Q̂ – Q)].



FIX THE CHARGE

ZΣ(Q) = ∫
π

–π

dθ

2π
eiθQ Tr[e–βHe–iθQ̂].

At large N the integral over θ becomes a Legendre transform

Δ(Q) = –
1

β
log(ZS2 (Q)) = sup

iθ

(iθQ – Seff(θ))

The trace is written as a path integral in two ways:

ZΣ(Q) = ∫
π

–π

dθ

2π
e–iθQ ∫

ψ(2πβ)=–e–θψ(0)
φ(2πβ)=e2iθφ(0)

Dφi e
–S[φ]

= ∫
π

–π

dθ

2π
e–iθQ ∫

ψ(2πβ)=–ψ(0)
φ(2πβ)=φ(0)

Dφi e
–Sθ[φ]



EFFECTIVE ACTION: COVARIANT DERIVATIVE
The actions are quadratic in the fermions. We can integrate them out. For the

bosonic fields, we expand as vacuum expectation value (VEV) plus fluctuations

σ = σ0 +
1

√
N
σ̂

φ0 = φ0 +
1

√
N
φ̂

The leading contribution comes from the VEV:

Ω = Seff = –NTr log(γμ∂μ – iθβγ3 + σ0)
Ω = Seff = –NTr log(γμ∂μ – iθβγ3γ5 + φ0 (1+γ52 ) + φ*0 (1–γ52 ))

This has to be minimized with respect to σ0 and φ0 (gap equation).

We can read iθ/β = μ as a chemical potential.



THE NAMBU–JONA–LASINIO MODEL
In the β→ ∞ limit, on the torus Σ = T2 , the grand potential is

Ω

N
= –∫ d2p

(2π)2 [√(|p| + μ)2 + |φ0 |2 +
√

(|p| – μ)2 + |φ0 |2]
= –

1

6π [3|φ|2μarctanh μ√
|φ|2+μ2

+ (μ2 – 2|φ|2)
√
|φ|2 + μ2]
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THE NAMBU–JONA–LASINIO MODEL
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The gap equation admits a non-

vanishing solution for any value

of μ

φ0 = μ

√
κ20 – 1 = 0.6627 · · ·×μ

This is the physics that we had discussed before: fixing the charge induces a

spontaneous symmetry breaking.

The field φ is the order parameter for the superfluid phase transition.



COOPER PAIRS

The scalar φ can be understood as a composite field

φ = ψ̄ψ + ψ̄γ5ψ

Its meaning is even more transparent after a Pauli–Gürsey transformation:

ψ 7→ 1

2 [(1 – γ5)ψ – (1 + γ5)Cψ̄T] , ψ̄ 7→ 1

2 [ψ̄(1 + γ5) –ψTC(1 – γ5)] .
because then we identify φ with a Cooper pair

φ = ψtCψ

In presence of an attractive interactions, fermion form

pairs that behave as bosons and undergo a Bose–

Einstein transition.



CONFORMAL DIMENSIONS
Now we can repeat the computation on S2 .

By the state-operator correspondence, the free energy is the conformal

dimension of the lowest operator.

Ω = –
N

4πr20

∞

∑
j=1/2

(2j + 1)(Ω+ + Ω–), Ω± = |φ|2 + (ωj ± μ)2 ,

where ωj = j + 1/2 are the eigenvalues on the sphere.

We need to minimize with respect to φ and Legendre transform from the

chemical potential μ to the chargeQ.

Two regimes:

• The large-charge regimeQ � N,

• The small-charge regimeQ � N



LARGE CHARGE
We need to regularize the sums (ask). The grand potential has two pieces:

Ωr = –
2N

3
(r0μ)3(3(κ20 – 1) arccoth κ0 + 3κ0 – 2κ30 + 2(κ20 – 1)3/2) +…,

Ωd = N(4(φ0r0)3

3
+
φ0r0
3

–
1

60φ0r0
+…).

In the large-charge regime we look for a solution of the form

φ0r0 =

√
κ20 – 1(μr0 + κ1

μr0
+

κ2

(μr0)3
+…) .

After some algebra we can solve the gap equation order-by-order

κ0 tanh κ0 = 1, κ1 = –
1

12κ20
, κ2 =

33 – 16κ20

1440κ60
, …



ORDER N

F
S2

(Q) = 4N

3 ( Q

2Nκ0 )3/2 + N

3 ( Q

2Nκ0 )1/2
–
11 – 6κ20

360κ20
( Q

2Nκ0 )–1/2 +O(e–√Q/(2N))
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SMALL CHARGE

In the small charge regime, we need again to separate the regular from the

divergent part:

Ωr = –2N ∑
`=1

`[√(` + 1

2
+ μ̂r0)2 + (φ0r0)2 +

√
(` – 1

2
– μ̂r0)2 + (φ0r0)2

–

√
(` + 1

2
)2 + (φ0r0)2 +

√
(` – 1

2
)2 + (φ0r0)2] ,

Ωd = –4N
∞

∑
`=1

(` + 1

2
)
√

(` + 1

2
)2 + (φ0r0)2 .

The divergent part can be understood in terms of zeta functions (ask)



SMALL CHARGE

Now we expand around μ = 1/(2r0) in powers of μ.
This is the conformal coupling to a cylinder in three dimensions.

μ = 1/(2r0) + μ2φ20r0 + μ4φ40r30 +….

With some algebra

Δ(Q)
2N

=
1

2 ( Q

2N) + 2

π2
( Q

2N)2 +…
Consistent with the fact that φ has charge two and dimension 1/2, so that

Δ(Q) ≈ Q/2.



ORDER N°

In the EFT we had a universal term. Is it really universal?

Here it can only appear at order 1/N, so we need to compute the fluctuations

around the vacuum. The fermion propagator is

Dψ(P) = (–i /P + φ0 – μΓ3Γ5)–1 .

The fluctuations for the scalars are obtained with a one-loop fermion

computation. For example the real part of φ interacts with itself via

K,µ,Φ0

P − K,−µ,−Φ0

I I = D–1(P) = –∫ d3k

(2π)3
Tr [Dψ(K)Dψ(P – K)] ,



ORDER N°: THE UNIVERSAL GOLDSTONE

The final result for the two real components is

D–1(P) = (κ0μ
π
+
2κ20(2κ20–1)ω2+(3κ60–2κ40–2κ20+2)p2

24πκ30(κ20–1)μ –
κ0
2π
ω

κ0
2π
ω

2κ0ω
2+κ30p

2

8π(κ20–1)μ
)+O(P3/μ3),

and from here we read the dispersion relations for a massive and for the

universal Goldstone mode

ω21 =
1

2
p2 +…,

ω22 = 12κ
4
0
κ20 – 1

2κ20 – 1
μ2 +

5κ60 – 5κ
4
0 – κ

2
0 + 2

2κ20(2κ20 – 1)
p2 +…



WHAT HAS HAPPENED?

• We have taken a model in which the fixed point is under large-N control

• Fixing the charge results in spontaneous symmetry breaking

• The order parameter is a composite field (Cooper pair)

• We compute the conformal dimension of the lowest operator of chargeQ

• We find a result in total agreement with the general EFT construction



THE GROSS–NEVEU–YUKAWA MODEL

Now for the Gross–Neveu–Yukawa model.

Integrating out the Matsubara frequencies we find

Ω

N
= –2∫ d2p

(2π)2 {ωp +
1

β
log (1 + e

–β(ωp+μ)) + (μ↔ –μ)} ,
with ω2p = p2 + σ20 . The gap equation is

σ0 –
1

β
log((1 + eβ(σ0+μ))(1 + eβ(σ0–μ))) = 0

and admits only the solution σ0 = 0.

In other words, in the large-N limit the symmetry is never broken.

This is different from the superfluid EFT behavior.



THE GROSS–NEVEU–YUKAWA MODEL
We can repeat the computation on the sphere. The grand potential is

Ω

N
= –

1

2πr20 [ ∑
ωj>μ

(2j + 1)ωj + μ ∑
ωj<μ

(2j + 1)]
the solution to the gap equation and the Legendre transform are

Q

N
=

1

2πr20
bμr0c(bμr0c + 1), E

N
=

1

6πr30
bμr0c(bμr0c + 1)(2bμr0c + 1).

This is the physics of a Fermi sphere.

However, the behavior of the conformal dimension is still the same

Δ =
2

3( Q

2N)3/2 + 1

12( Q

2N)1/2 – 1

192( Q

2N)–1/2 + ...



WHAT HAS HAPPENED?

• We have taken a model in which the fixed point is under large-N control

• Fixing the charge does not result in spontaneous symmetry breaking

• The physics is the one of a Fermi sphere

• The dimension of the lowest operator still obeys the same law

• Conundrum: is this a large-N effect or is there a finite-N transition?



CONCLUSIONS



CONCLUSIONS

• With the large-charge approach we can study strongly-coupled systems

perturbatively.

• Select a sector and we write a controllable effective theory.

• The strongly-coupled physics is (for the most part) subsumed in a

semiclassical state.

• Precise and testable predictions.

• Fermionic systems at large N

• Spontaneous symmetry breaking vs Fermi sphere.
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