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WHY ARE WE HERE? CONFORMAL FIELD THEORIES

extrema of the RG flow critical phenomena
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WHY ARE WE HERE? CONFORMAL FIELD THEORIES ARE HARD
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Most conformal field theories (CFTs) lack nice limits
where they become simple and solvable.

No parameter of the theory can be dialed to a
simplifying limit.



WHY ARE WE HERE? CONFORMAL FIELD THEORIES ARE HARD

In presence of a symmetry there can be sectors of the theory

where anomalous dimension and OPE coefficients simplify.




THE IDEA

Study subsectors of the theory with fixed quantum number Q.

&
In each sector, a large
in a perturbative ex



CONCRETE RESULTS

We consider the O(N) vector model in three dimensions. In the IR it flows to a
conformal fixed point [Wilson & Fisher].

We find an explicit formula for the dimension of the lowest primary at fixed
charge:

_ S3/2 ~13/2 172 _ =1/2
Ag = 2\/50 +2y/Acy,Q"2-0.094 + 0(Q72)
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SUMMARY OF THE RESULTS: 0(2)
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STATE-OPERATOR CORRESPONDENCE

The anomalous dimension on RY is the energy in the cylinder frame.

R x Sd—1

N
e

Protected by conformal invariance: a well-defined quantity.
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SCALES

We want to write a Wilsonian effective action.




SCALES

We want to write a Wilsonian effective action.




SCALES

* We look at a finite box of typical length R
® The U(1) charge Q fixes a second scale p1/2 ~Q"?/R

12 Q12
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For A <« p“ . tﬁe effective action is weakly coupled and
under perturbative control in powers of p™'.



NON-LINEAR SIGMA MODEL

In a generic theory™, picking the lowest state of fixed charge induces a
spontaneous symmetry breaking.
The low-energy physics is described by a Goldstone field x.

Using conformal invariance, the most general action must take the form
L[X] = k3/2 (apxa*‘x)3/2 1P k1/2 R(apxapx)”z T 000

These are the leading terms in the expansion around the classical solution
X = pt. All other terms are suppressed by powers of 1/Q.

The energy of the lowest state for this action is the conformal dimension of the

lowest operator of given charge Q.
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100 GOOD TO BE TRUE'?

14

12

10

o N L » oo
T T T T




700 GOOD TO BE TRUE?

Think of Regge trajectories.

The prediction of the theory is

M2, GeV?

m? o J(1+0(7))

but experimentally everything
works so well at small J that String
Theory was invented.




700 GOOD T0 BE TRUE?

The unreasonable effectiveness




SELECTED TOPICS IN THE LARGE CHARGE EXPANSION
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WHAT HAPPENED?

We started from a CFT.
There is no mass gap, there are no particles, there is no Lagrangian.

We picked a sector.
In this sector the physics is described by a semiclassical configuration plus
massless fluctuations.

The full theory has no small parameters but we can study this sector with a
simple effective field theory (EFT).

We are in a strongly coupled regime but we can compute physical observables
using perturbation theory.

O



TODAY'S TALK

The EFT for the O(2) model in 2 + 1 dimensions
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Justify and prove all my claims from first principles in four-Fermi models



TODAY'S TALK

The EFT for the O(2) model in 2 + 1 dimensions
® An EFT for a CFT.
® The physics at the saddle.

* State/operator correspondence for anomalous dimensions.

Justify and prove all my claims from first principles in four-Fermi models



TODAY'S TALK

The EFT for the O(2) model in 2 + 1 dimensions

Justify and prove all my claims from first principles in four-Fermi models

* well-defined asymptotic expansion (in the technical sense)
® justify why the expansion works at small charge

® compute the coefficients in the effective action in large-N

O






AN EFT FOR A CFT
USE THE SYMMETRY
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THE 0(2) MODEL

The simplest example is the Wilson-Fisher (WF) point of the O(2) model in
three dimensions.

* Non-trivial fixed point of the ¢* action

Lyy =3, 3, -u(p ¢)?

Strongly coupled

* In nature: 4He.

Simplest example of spontaneous symmetry breaking.

Not accessible in perturbation theory. Not accessible in 4 - €. Not
accessible in large N.

Lattice. Bootstrap.
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CHARGE FIXING

We consider a subsector of fixed charge Q.

Generically, the classical solution at fixed charge breaks spontaneously
Ut — 0.

We have one Goldstone boson .



AN ACTION FOR x

Start with two derivatives:
L[x] = fog va.y-c3
Xi= 2 px pX

(x is a Goldstone so it is dimensionless.)



AN ACTION FOR x

Start with two derivatives:
u]—ﬁa 3, x - C3
Xi= 2 px pX

(x is a Goldstone so it is dimensionless.)

We want to describe a CFT: we can dress with a dilaton

-2fc

Haﬂ=m2

-2fo
- e R
= Gfa Gy T(apcapo— ?—2)

The fluctuations of x give the Goldstone for the broken U(1), the fluctuations of
o give the (massive) Goldstone for the broken conformal invariance.

[§)



LINEAR SIGMA MODEL

We can put together the two fields as
>=o0+if,x

and rewrite the action in terms of a complex scalar

We get

Lip] =3,¢ @ -ERp @ -u(p @)

Only depends on dimensionless quantities b = fzf,., and u = 3(Cf?)3.

Scale invariance is manifest.
The field ¢ is some complicated function of the original ¢.

[§)



CENTRIFUGAL BARRIER

The O(2) symmetry acts as a shift on x.

Fixing the charge is the same as adding a centrifugal term %

Vv

€« o

I 1%



GROUND STATE

We can find a fixed-charge solution of the type

X(t, x) = pt o(t,x) = %Iog(v) = const.,
where
x Q12 4 L
H Q172

The classical energy is

E = c3,,VQ*2 + ¢y pRVQ2 + 0(Q72)

O



FLUCTUATIONS

The fluctuations over this ground state are described by two modes.

® A universal “conformal Goldstone”. It comes from the breaking of the U(1).

* The massive dilaton. It controls the magnitude of the quantum fluctuations.
All quantum effects are controled by 1/Q.

2

oo=2p+p—

2y

(This is a heavy fluctuation around the semiclassical state. It has nothing to
do with a light dilaton in the full theory)

[§)



NON-LINEAR SIGMA MODEL

Since o is heavy we can integrate it out and write a non-linear sigma
model (NLSM) for x alone.

L[X] = k3/2 (apxa*‘x)g’/z + k1/2 R(apxa*‘x)wz + ...

These are the leading terms in the expansion around the classical solution

X = pt.
All other terms are suppressed by powers of 1/Q.



STATE-OPERATOR CORRESPONDENCE

The anomalous dimension on RY is the energy in the cylinder frame.

R x Sd—1

H, N
e

Protected by conformal invariance: a well-defined quantity.
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CONFORMAL DIMENSIONS

We know the energy of the ground state.
The leading quantum effect is the Casimir energy of the conformal Goldstone.

1 1,02
Ec = ——({(-5|S°) =-0.0937...
WA

This is the unique contribution of order QV.

Final result: the conformal dimension of the lowest operator of charge Q in the
0O(2) model has the form

Aqg = =£Q +2 Q -0.094+0(Q
Q 2/n Ve ( )
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WHAT HAPPENED?

We started from a CFT.

There is no mass gap, there are no particles, there is no Lagrangian.
We picked a sector.

In this sector the physics is described by a semiclassical configuration plus
massless fluctuations.

The full theory has no small parameters but we can study this sector with a
simple EFT.

We are in a strongly coupled regime but we can compute physical observables
using perturbation theory.

[§)



LARGE N VS. LARGE CHARGE




GROSS—NEVEU AND NAMBU—JONA—LASINIO

Simplest four-Fermi models

Sonlwl = Jdtdi > Wiy o,y (ww)
i= ’I

SnuLly, @] = jdtdz > wiv' oy [(w> (CPYsLP)z]

Respectively O(4N) and U(N) x U(1) symmetry.
Non-trivial CFT in the ultraviolet (UV).
Convenient to introduce collective fields
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GNY AND NJL MODELS AT LARGE N

N
- 1
i=1 Y

N
SnuLLW. ] = Jdtdi > Wiy ot () + o (2) ] wi+ ;—Yapcp* 3,
i=1

They flow in the IR to the same CFTs.
We want to fix U(1) charges.

Yi — eiokPi:

p — ey, @ — e,
and compute the partition function at fixed charge

Z(Q) = Tr[e'BHS(é— Q)].



FIX THE CHARGE

" d® _iea Tr[e—BH JuTCle! ]
2n

-n

Z5(Q) = I
At large N the integral over 6 becomes a Legendre transform
1 .
I log(Zs2 (Q)) = s%per - Seff(0))
!

The trace is written as a path integral in two ways:

AQ) =

Zs (Q)

o M
@e_ieo J DCPI e‘s[‘P]
2n

v-n
p(2nB)=-ey(0)
P(2nB)=e?°p(0)

_[" 98 6 I

-9
Dep: e
Jon 2|_| (PI

w(2nP)=-y(0)
@ (2nB)=p(0) O



EFFECTIVE ACTION: COVARIANT DERIVATIVE

The actions are quadratic in the fermions. We can integrate them out. For the
bosonic fields, we expand as vacuum expectation value (VEV) plus fluctuations

1 .
o=0g+—
" UN

= +—A

Po = Po \/NCP

The leading contribution comes from the VEV:
.0
Q=S¢ =-NTrlog yPap - IEYB +0p
.0
Q=S = -NTrlog(Y“a u-igYaYs + @ (552) + 20 (TY))

This has to be minimized with respect to oy and ¢ (gap equation).
We can read i6/p = p as a chemical potential. {)



THE NAMBU—JONA-LASINIO MODEL

In the B — o limit, on the torus 2 = T2, the grand potential is

%=-J(2 )2[\/(|p + 2 +|ol2 +1/(Ipl - u>2+!cpo|2]

(2 - 2|p|?)y/|p|? + u2]

= 6l [3|cp]2p arctanh

+
\/ |<P|2+u2

10F 1
— u=0
st 1 — p=1
— =2
0’\/\/—
st g
E =il 1

5
ol
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THE NAMBU—JONA-LASINIO MODEL

The gap equation admits a non-

10 1 . . .
, vanishing solution for any value
e
3t 1 —u-1 of p
— u=2
or 4
]S ]
= = 0 | >

¢Pg =M K%-1 =0.6627 ---xp

This is the physics that we had discussed before: fixing the charge induces a
spontaneous symmetry breaking.

The field ¢ is the order parameter for the superfluid phase transition.

O



COOPER PAIRS

The scalar ¢ can be understood as a composite field
—m D
P=YY+Hyy y
Its meaning is even more transparent after a Pauli-Glrsey transformation:

[ -vw-(1+v)CHT], G 2 (80 +vs) -wTC -vs)].

(41
25

Y —
because then we identify ¢p with a Cooper pair

¢ =y'Cy

In presence of an attractive interactions, fermion form
pairs that behave as bosons and undergo a Bose—
Einstein transition.



CONFORMAL DIMENSIONS

Now we can repeat the computation on 52.
By the state-operator correspondence, the free energy is the conformal

dimension of the lowest operator.

N & .
Q=-—F3 3 Q2+ D(Q +Q.), Q. = [pf? + (wj £ )2,
anrg =172

where w; = j + 1/2 are the eigenvalues on the sphere.
We need to minimize with respect to ¢ and Legendre transform from the
chemical potential p to the charge Q.

Two regimes:
* The large-charge regime Q > N,
® The small-charge regime Q < N



LARGE CHARGE

We need to regularize the sums (ask). The grand potential has two pieces:

Q, = -%(rop)3 (3(K(2) - 1) arccoth kg + 3kg - 2K8 + 2(K% -1 )3/2) SR

4(Poro)® | Poro 1
Q=N + = + ... .
d ( 3 3 60gppr,

In the large-charge regime we look for a solution of the form

cp0r0=,/|<(2)—1 (prO+KT1+ <2 +)
2l

(Wo)3

After some algebra we can solve the gap equation order-by-order

1 33-16K3
Ko tanhkg = 1, Kq = Ky = >0
oo ! " 1440k$

_12K0,
O



ORDER N




ORDER N




ORDER N




ORDER N




ORDER N




SMALL CHARGE

In the small charge regime, we need again to separate the regular from the

divergent part:

Qr =-2N Z B[\/(€+%+pr0)2 + (cpol’o)z + \/(6—%—Qr0)2 + ((p0r0)2
=1

- \/<4+ %>2 + (qoro)? + \/(ﬁ— %)2 + (poro)? |,

Qd = -4N Z (€+ %)\/(£+ %)2 ar ((Poro)z.
/=1

The divergent part can be understood in terms of zeta functions (ask)

[§)



SMALL CHARGE

Now we expand around p = 1/(2rg) in powers of p.
This is the conformal coupling to a cylinder in three dimensions.

u=1/2rg) + pch(z)ro + p4cp61r8 = o000

With some algebra

2N 2

Lol (g)z

2N/ p2 \2N
Consistent with the fact that ¢ has charge two and dimension 1/2, so that
A(Q) = Q/2.

[§)



ORDER N°

In the EFT we had a universal term. Is it really universal?
Here it can only appear at order 1/N, so we need to compute the fluctuations
around the vacuum. The fermion propagator is

Dy (P) = (-iP+ g - ul3Ts)™".

The fluctuations for the scalars are obtained with a one-loop fermion
computation. For example the real part of ¢ interacts with itself via

K, p, ®o

g 0
]IQ]I =D'1(P)=—J.—Tr[Dw(K)Dw(P-K)],
N— (2n)?

P—K,—p, -



ORDER N°: THE UNIVERSAL GOLDSTONE

The final result for the two real components is

KoM 2K% (2K(2)—1 )002+(3K8—2K8—2Kg+2)p2

52w
- 3 ((rd2
D'y = " i G- o, | ro®dnd,
K0 oo 2Kgw* +Kgp
2n 8n(|<%—1)|,|

and from here we read the dispersion relations for a massive and for the
universal Goldstone mode

2_ 12
Wy = =p° +...
1 2P
2 6 4 2
K§ -1 5kg - 5kg -k§ + 2
oo%=’|2|<6 0 2y 2 0-"0 S

ZK% -1 ZK%(ZK% -1



WHAT HAS HAPPENED?

* We have taken a model in which the fixed point is under large-N control

Fixing the charge results in spontaneous symmetry breaking

The order parameter is a composite field (Cooper pair)

® We compute the conformal dimension of the lowest operator of charge Q

We find a result in total agreement with the general EFT constructio




THE GROSS—NEVEU—YUKAWA MODEL

Now for the Gross-Neveu-Yukawa model.
Integrating out the Matsubara frequencies we find

Q_ d’p 1 -Bwp+h)
N——zjm{wp‘FEIOg(‘l‘Fe P )+(|JH—}J)},

with oog = p2 + 0(2). The gap equation is
og - % Iog((1 + Pty (1 4 eB(Co-W)) =0

and admits only the solution oy = 0.

In other words, in the large-N limit the symmetry is never broken.

This is different from the superfluid EFT behavior.



THE GROSS—NEVEU—YUKAWA MODEL

We can repeat the computation on the sphere. The grand potential is

Z|0

1 . :
> Y Qi+ Dwj+p Yy (2j+1)

2I'II‘0 ®j>lJ ooJ-<|,|

the solution to the gap equation and the Legendre transform are

o

Z|lm

1 1

N = 5oz ol (Luro + 1), 3 Mo (luro | + D (2[prg ) + 1)
N 2nr§ énrg

This is the physics of a Fermi sphere.

However, the behavior of the conformal dimension is still the same

+

192

2/ Q 3/2
) o

=5l l(Q)w‘ : (Q)_”z*

12\ 2N



WHAT HAS HAPPENED?

* We have taken a model in which the fixed point is under large-N control

Fixing the charge does not result in spontaneous symmetry breaking

The physics is the one of a Fermi sphere

The dimension of the lowest operator still obeys the same law

Conundrum: is this a large-N effect or is there a finite-N transition?




CONCLUSIONS




CONCLUSIONS

® With the large-charge approach we can study strongly-coupled systems
perturbatively.

* Select a sector and we write a controllable effective theory.

* The strongly-coupled physics is (for the most part) subsumed in a
semiclassical state.

® Precise and testable predictions.
® Fermionic systems at large N

® Spontaneous symmetry breaking vs Fermi sphere.
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