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WHY ARE WE HERE? CONFORMAL FIELD THEORIES

extrema of the RG flow critical phenomena
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WHY ARE WE HERE? CONFORMAL FIELD THEORIES ARE HARD
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Most conformal field theories (CFTs) lack nice limits
where they become simple and solvable.

No parameter of the theory can be dialed to a
simplifying limit.



WHY ARE WE HERE? CONFORMAL FIELD THEORIES ARE HARD

In presence of a symmetry there can be sectors of the theory

where anomalous dimension and OPE coefficients simplify.




THE IDEA

Study subsectors of the theory with fixed quantum number Q.

&
In each sector, a large
in a perturbative ex



CONCRETE RESULTS

We consider the O(N) vector model in three dimensions. In the IR it flows to a
conformal fixed point [Wilson & Fisher].

We find an explicit formula for the dimension of the lowest primary at fixed
charge:

_ S3/2 ~13/2 172 _ =1/2
Ag = 2\/50 +2y/Acy,Q"2-0.094 + 0(Q72)
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SUMMARY OF THE RESULTS: 0(2)
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STATE-OPERATOR CORRESPONDENCE

The anomalous dimension on RY is the energy in the cylinder frame.

R x Sd—1

N
e

Protected by conformal invariance: a well-defined quantity.



SCALES

We want to write a Wilsonian effective action.




SCALES

* We look at a finite box of typical length R
® The U(1) charge Q fixes a second scale p1/2 ~Q"?/R

12 Q12
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For A <« p“ . tﬁe effective action is weakly coupled and
under perturbative control in powers of p™'.



NON-LINEAR SIGMA MODEL

In a generic theory™, picking the lowest state of fixed charge induces a
spontaneous symmetry breaking.
The low-energy physics is described by a Goldstone field x.

Using conformal invariance, the most general action must take the form
L[X] = k3/2 (apxa*‘x)3/2 1P k1/2 R(apxapx)”z T 000

These are the leading terms in the expansion around the classical solution
X = pt. All other terms are suppressed by powers of 1/Q.

The energy of the lowest state for this action is the conformal dimension of the

lowest operator of given charge Q.

O



100 GOOD TO BE TRUE'?
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700 GOOD TO BE TRUE?

Think of Regge trajectories.

The prediction of the theory is

M2, GeV?

m? o J(1+0(7))

but experimentally everything
works so well at small J that String
Theory was invented.




700 GOOD T0 BE TRUE?

The unreasonable effectiveness
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WHAT HAPPENED?

We started from a CFT.
There is no mass gap, there are no particles, there is no Lagrangian.

We picked a sector.
In this sector the physics is described by a semiclassical configuration plus
massless fluctuations.

The full theory has no small parameters but we can study this sector with a
simple effective field theory (EFT).

We are in a strongly coupled regime but we can compute physical observables
using perturbation theory.

» would you like to know more?

O



TODAY'S TALK

Justify and prove all my claims from first principles

* well-defined asymptotic expansion (in the technical sense)
® justify why the expansion works at small charge

* compute the coefficients in the effective action in large-N
Use resurgence for the large-charge EFT

* Borel resum the double-scaling Q — o0, N — oo limit
® geometric interpretation of non-perturbative effects

® general structure of the corrections in the EFT
)






LARGE N VS. LARGE CHARGE




THE MODEL

¢@* model on R x = for N complex fields
N pv * * u * 2
Seleil =Y | dtdz [9 (Bui) (Buepi) + @i i + 5 (i i) ]
i=1

It flows to the WF in the IR limit u — o when ris fine-tuned.
We compute the partition function at fixed charge

N
2(01, ...,QN) = Tr[e'BH |_| 8(él _Qi)]
i=1

where
Q = I dzjp =i J d> [CP:CPi "-P?CPi]-

[§)



FIX THE CHARGE

Explicitly

[

_|-||

N :Z

JR(ce! Tr[e—BH H o6 o} ]
i=1

Since Q depends on the momenta, the integration is not trivial but well
understood.

"d6 _iga s
Zs(Q) = J —e} J. Pty
. 2n * . &
(2nB)=e®p(0)
= J ' @e-iea J. Dep; o-S° [l

q 2n
P(2nP)=¢(0)

[§)



EFFECTIVE ACTION: COVARIANT DERIVATIVE

N
* R * *
Srpi=3 I dtd> (<Dp<Pi) (DHepy) + g Pi Pi T 2u(Q; cPi)z)
i=1
.0
Dop =00 +ige
Di¢ =0;p
Stratonovich transformation
N . * . o
SQ = Z [—iGiQi + J dtd> |:(DLI(PI) (DIp(PI) + (r+?\)cpi (PI:|]
i=1

Expand around the VEV

lA-+u- A=m? +A

(Pi=\/§| ir



EFFECTIVE ACTION FOR A

We can now integrate out the u; and get an effective action for A alone

SolA] = % [VB(Z—i + m2)A2—i2 +Tr[log(-D},D}, + m? +$\)]].
i=1

Non-local action for A.
To be expanded order-by-orderin 1/N.
We can identify the functional determinant with the grand-canonical (fixed

chemical potential) free energy:

Fae(i0) = E
efe ]

2 2 o
2 V(S—'2 + mZ)AT' + %Tr[log(—D'pD'H +m2)]].

(&)



ZETA FUNCTIONS

In the limit B — o (zero temperature), we regularize with a zeta function
Q(s|2,m) = Zp(E(p)2 +m?)s:

The gap equations are (set Ay =v, A, =0):

5 ,2.N-1 B
% Ve + 2 C(1/2|2, m) = O,
5 .2V,

8—9. iQ+ BeV —0,

5, 2, 0%\ _
aZVB(m +B—2)V—O,

For finite Q we need necessarily v # 0 and then 6 = imf. So we get

m{(1/2[5, m) = -%

[§)



ORDER N

At leading order in N, the free energy is

FQ) = - (ieQ+N 2612

—_— -1/2|Z,
B ds 2/nl(s) BG(s-1/22,m)

ol

Using the gap equations

F(Q) = mQ + N((-1/2|Z, m)

Fors = S? at large Q/N:

N\/E(Q)3/2+ N (0)1/2 7N (Q)—1/2+-"

F(Q) = —“2(= - —
< 3 \N 3v2 180v2\N



SMALL Q/N

The zeta function can be expanded in perturbatively in small Q/N.
Result:
16 (n? -12) Q2

3n4N?2

* Expansion of a closed expression
® Start with the engineering dimension 1/2

® Reproduce an infinite number of diagrams from a fixed-charge one-loop

calculation



ORDER N




UNIVERSAL TERM: INTEGRATE ALL BUT ONE
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WAS IT WORTH IT?

Millions of troops
are on the move..




FINAL RESULT

AQ) = (% 4 O(NO))(%)B/Z 4 (g 4 O(N(’))(%)”z o

-0.0937...
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RESURGENCE AND THE LARGE CHARGE




RE@UETS‘ FMM ILARGE Nensnons on R x 3. Double-scaling limit N — o,

Q — o« with § = Q/(2N) fixed.

FS (Q) = pQ + Ng(-5[2, ),
NG ANERSS

The free energy per DOF f(§) = F/(2N) is
- . 1
f(§) = sup(ug - w(p)), () = -8 (-3[Z 1),
b 2> 2

C(s|2, p) is the zeta function for the operator -A + p2. In Mellin representation

[ dts v
((slzm—mj -ttt Trect),

Large g is large p and is small t. The classical Seeley-de Witt problem:

Tr(@At\ (1 +£f+ \ {)



THE TORUS

As a warm-up: 2 = 2.
§ 2 2
spec(A) = {—L—Z(k1 + kz) | kq, ko € Z}.

It follows that the heat kernel trace is the square of a theta function:

4n2 2 2 4n2t
-—— (k7 +k5)t -
Tr(eAt>= Z e 1212 2 05(0,e 2y .
k1,k2€Z

We are interested in the small-t limit: we Poisson-resum the series:
2,2\ 12 2 2,2
L _kfL% L L
Tr(em>=|: (1+ z e 4 ):| =4—(‘I+ Z &
V 4|'|t kez, nt kEZz

O




THE TORUS

Grand potential

W) =-=C(-z[T*, ) = —[1+ 1+ .
W) =585l =T % k|2 p2L2 [[k[[pL

Free energy

) ) I oIkl v/3ma
£(§) = sup(ug - w(p)) = 1 1-Y& — 4.
D = sup(Hg - () = 574 % 8123

® perturbative expansion in p (here a single term) plus exponentially
suppressed terms controlled by the dimensionless parameter pL

* the free energy is written as a double expansion in the two parameters 1/§
and e" V419,

® non-perturbative effects more important than the “usual” instantons (’)(e’

O

O



THE SPHERE

On the two sphere spec(A) = {-£(¢ + 1) | € Ny } with multiplicity 2¢ + 1.

Again, we use Poisson resummation

n+’I 1-2n
(1 2 ) antn

Tr<eAt>e-t/4 — Z (20 + 1)e-(£+1/2)2t % g

|
>0 n:

The series is asymptotic: the Seeley-de Witt coefficients diverge like n!:

_q\n+1 .4 _51-2n 1/2
-1) (1-2 )B2n N 2n "
n! n°/2+2n

an =

this divergence is reflected in the existence of non-perturbative corrections.

O



BOREL RESUMMATION




BOREL TRANSFORM

We need to make sense of the divergent series and the imaginary terms.




LATERAL TRANSFORM

If there are poles on the real positive axis there is an ambiguity

s

&%

s, (H)(t) = s(H) (1) = I wP e i ew® ) AW
C. b

sy (H)-s_(H) = (2ni)Zresidue
k

We need an independent definition of the non-perturbative effects to cancel
the imaginary ambiguity.

O



MORE INGREDIENTS




WORLDLINE INTERPRETATION

We need a non-perturbative interpretation of these exponential terms.

We read the heat kernel as the partition function of a particle at inverse
temperature t and Hamiltonian H = —8(2) - A, i.e. a free quantum particle moving
onR x 2.

We can write the partition function as a path integral

Tr(e(agJ'A)t) =N I DX e-S[X]
X(1)=X(0)

where the action is

_1 H oV
S[X] = EIO dTngX (T)X (T)



A TRANSSERIES FROM GEODESICS

In the limit t — O the path integral localizes on a sum over all the closed
geodesics y.

2
For each geodesic a perturbative series in t, weighted by e™(Y) e
Tr(e(ag"LA)t) =N J DX e>X]
X(1)=X(0)

[><] _M B [~<]
=tPo Y a0+ > e @ Py Y alYt",
n=0 y € closed geodesics n=0

the b, depend on the geometry.

This is precisely the same structure predicted by resurgence.

Now we have a geometric interpretation.

O



THE TORUS

In the case of the torus, closed geodesics are labelled by two integers (kq, ko)
S

The length of the geodesicis £(kq, ky) = L\/k% + k3.

The integral is quadratic and the fluctuations around each geodesic give the
usual

N Dhe i Jg drh)2+(h)? =/\/det(132>_1 -
4t T 4nt
h(1)=h(0)=0

O



THE TORUS

Now we can write the result of the path integral

Tr(em> =N J DX e SX] = A2 Z e S[Xc1-S[h]

X
X(1)=X(0) “h(1)=h(0)=0
L2 (kK +k3)
= N2 z e 4 J Dhe's[h],

2
kez h(1)=h(0)=0

L2 _L2)jk)2
=— |1+ z e 4
kez?

This is exactly what we had found before just by looking at the spectrum.
Now we can understand the non-perturbative effects in terms of closed
geodesics.

O



THE SPHERE

Closed geodesics on the sphere go around the equator k times

We need to sum over the fluctuations h, and hg

There is a zero mode because we can rotate the equator

And an instability because we can slide off



BACK TO RESURGENCE

Putting it all together, the non-trivial geodesics give

k2n2

372 )
12.(¥) S kle

kez

The one-loop result perfectly cancels the imaginary ambiguity of the Borel sum!

2 2

1 3/2 k“n
Tr(e(A_Zﬁ) =s.M®F2(7) Y Drke T =Rels.(H)®)]
>



BACK TO RESURGENCE

We can write the exact expression for the grand potential (m? = p2 +1/4):

£ 1/23/2
2ir “m -2nrm

2rm? °°d Ko (2mry) =£ s.m,.er mo
0 3 24 (4n)3/2

w(p) =Re [ : m°-—+
ysin(y)

As a numerical test, we can compare with the convergent small-charge
expansion (g = 0.6)

=0.012777 296 63...

roo(mr =0.4)
small charge

=0.012777 297 69...

resurgence

reo(mr = 0.4)




OPTIMAL TRUNCATION




LESSONS FROM LARGE N

Let's go back to the EFT.
The effective action is identified with the asymptotic expansion: the grand
potential is the value of the action at the minimum x = put:

w(y) = LEFT'
X=Ht
where
3/2 1/2
LEET = @0 <apxa”x) + w4 <8px8“x) + ...,

In general the coefficients are unknown
BUT

Now we have a geometric understanding of the non-perturbative effects

O



LESSONS FROM LARGE N

Assume:
1. the large-charge expansion is asymptotic;

2. the leading pole in the Borel plane is
a particle of mass p going around the equator.

A CFT has no intrinsic scales.

The only dimensionful parameter is due to the fixed charge density.

The conformal dimension is a transsem

+C Qb1 -3I1Kfé)>\/_ Z (1) 1 + .

AQ)=Q%2 Y f<0> - o

n>0 n>0

(we used p = 3f60) VQ/2 +....)



LESSONS FROM LARGE N

® The controlling parameter for the non-perturbative effects e
fixed by the leading term in the 1/Q expansion.

(0)
-3nkf;

—3an60> V(o) g

® The non-perturbative coefficient e VO fixes the large-n behavior of

the perturbative series fﬁ,o).
fO ~ (2n)1(3nkf)™

We don’t know enough for a Borel resummation, but we can estimate an
optimal trucation (the value of n where f,ﬂo)Q'” is minimal)

N* 3|'|Kf0 Q1/2
2

corresponding to an error of order £(Q) =

0<e‘*/5)



CAN WE UNDERSTAND THE LATTICE RESULTS NOW?

14

12 -

10

g o In0(2), f = 0.301(3)
° soN" =(’)<\/6) and €(Q) =O(e‘”‘/6).
Al
2l MC data —&—
o ‘ fit —
2 4 6 8 10
Q
Lattice: Best fit with N = 3 terms.

AtQ=1theerrorisz6x10'2;atQ=11theerrorisz5><10'5.

Resurgence: V10 = 3.16
e ~4x102ande™ 1T =3x1075. o



WHAT HAS HAPPENED?

® The large-charge expansion of the Wilson-Fisher point is asymptotic

® In the double-scaling limit Q — o0, N — o we control the perturbative
expansion

* We can Borel-resum the expansion

* We have a geometric interpretation for the non-perturbative effects
® We can use this geometric interpretation also in the finite-N case

* We obtain an optimal truncation and estimate of the error

* The results are consistent with lattice simulations



CONCLUSIONS

® With the large-charge approach we can study strongly-coupled systems
perturbatively.

* Select a sector and we write a controllable effective theory.

* The strongly-coupled physics is (for the most part) subsumed in a
semiclassical state.

® Precise and testable predictions.
® Qual(nt)itative control of the non-pertubative effects.
* CFT constraints: perturbative/non-perturbative interplay.

* Remarkable agreement with lattice.




AN EFT FOR A CFT
USE THE SYMMETRY
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THE 0(2) MODEL

The simplest example is the WF point of the O(2) model in three dimensions.

* Non-trivial fixed point of the ¢* action

Lyy =3,® 3,®-u(p ¢)?

Strongly coupled

® |In nature: 4He.

Simplest example of spontaneous symmetry breaking.

Not accessible in perturbation theory. Not accessible in 4 - €. Not
accessible in large N.

® Lattice. Bootstrap.



CHARGE FIXING

We consider a subsector of fixed charge Q.

Generically, the classical solution at fixed charge breaks spontaneously
Ut — 0.

We have one Goldstone boson .



AN ACTION FOR x

Start with two derivatives:
u]—ﬁa 3, x - C3
Xi= 2 px pX

(x is a Goldstone so it is dimensionless.)

We want to describe a CFT: we can dress with a dilaton

-2fc

Haﬂ=m2

-2fo
- e R
= Gfa Gy T(apcapo— ?—2)

The fluctuations of x give the Goldstone for the broken U(1), the fluctuations of
o give the (massive) Goldstone for the broken conformal invariance.



LINEAR SIGMA MODEL

We can put together the two fields as
>=o0+if,x

and rewrite the action in terms of a complex scalar

We get

Lip] =3,¢ @ -ERp @ -u(p @)

Only depends on dimensionless quantities b = fzf,., and u = 3(Cf?)3.

Scale invariance is manifest.
The field ¢ is some complicated function of the original ¢.



CENTRIFUGAL BARRIER

The O(2) symmetry acts as a shift on x.

Fixing the charge is the same as adding a centrifugal term %

Vv

€« o

I 1%



GROUND STATE

We can find a fixed-charge solution of the type

X(t, x) = pt o(t,x) = %Iog(v) = const.,
where
x Q12 4 L
H Q172

The classical energy is

E = c3,,VQ*2 + ¢y pRVQ2 + 0(Q72)



FLUCTUATIONS

The fluctuations over this ground state are described by two modes.

® A universal “conformal Goldstone”. It comes from the breaking of the U(1).

* The massive dilaton. It controls the magnitude of the quantum fluctuations.
All quantum effects are controled by 1/Q.

2

oo=2p+p—

2y

(This is a heavy fluctuation around the semiclassical state. It has nothing to
do with a light dilaton in the full theory)



NON-LINEAR SIGMA MODEL

Since o is heavy we can integrate it out and write a non-linear sigma
model (NLSM) for x alone.

L[X] = k3/2 (apxa*‘x)g’/z + k1/2 R(apxa*‘x)wz + ...

These are the leading terms in the expansion around the classical solution

X = pt.
All other terms are suppressed by powers of 1/Q.



STATE-OPERATOR CORRESPONDENCE

The anomalous dimension on RY is the energy in the cylinder frame.

R x Sd—1

N
e

Protected by conformal invariance: a well-defined quantity.



CONFORMAL DIMENSIONS

We know the energy of the ground state.
The leading quantum effect is the Casimir energy of the conformal Goldstone.

1 1,02
Ec = ——({(-5|S°) =-0.0937...
WA

This is the unique contribution of order QV.

Final result: the conformal dimension of the lowest operator of charge Q in the
0O(2) model has the form

Aqg = =£Q +2 Q -0.094+0(Q
Q 2/n Ve ( )



WHAT HAPPENED?

We started from a CFT.
There is no mass gap, there are no particles, there is no Lagrangian.

We picked a sector.

In this sector the physics is described by a semiclassical configuration plus
massless fluctuations.

The full theory has no small parameters but we can study this sector with a
simple EFT.

We are in a strongly coupled regime but we can compute physical observables
using perturbation theory.



ORDER N°

The order N° terms are

7\v<6+6*))

95,4 = I dtds ((D,8)" (DH&) + (u? + &5 + N7

+ 15 .[ C|X1 dX2 A)\(X1 )7\(X2)D(X1 = X2)2
where D(x -y) is the propagator (D, DM + m?)1.

At low energies we can approximate the non-local term as
3 (12 \ 3 (312
J. dtdXA(x)“C(2|6,2, p) = 5c J dtd>A(x)
M

and we can integrate A out.



ORDER N°

The inverse propagator for o is

1/2(w? + p2 + 4p2) S[)
-Hw 1/2(002 + p2)

It describes a massive mode and a massless mode with dispersion
w2+1p2+...=0 002+8p2+§p2+...=0
2 2
This is the conformal Goldstone that we have seen in the EFT.

Its contribution to the partition function is

Eg = 1lc<1/2|52) =-0.0937...

22

This is universal. Does not depend on N or Q.



HIGHER ORDERS

There are infinite non-local terms
= 1

Soll= z

n=3 n(N _ 1 )n/2—1

At low energy they are approximated by

(o] 1 N
S = ——— | dxA(x)"C
nl n§3 n(N_1)n/2—1 I n

I dxq ... dx, X(x1 )...7\(xn)P(x1 L eens



HIGHER ORDERS

There is only one scale, the charge density p = Q/V. We must have
Cn — p3/2-nCn
So

— N3/2 < C:n 2 n
S, =Q n§3 —n(N— T J. dx A(x)

Infinite corrections of order Q32 (and following), controlled by 1/N.
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