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WHY ARE WE HERE? CONFORMAL FIELD THEORIES

extrema of the RG flow critical phenomena

W,
4{
4

of 44
4

string theory




WHY ARE WE HERE? CONFORMAL FIELD THEORIES ARE HARD
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Most conformal field theories (CFTs) lack nice limits
where they become simple and solvable.

No parameter of the theory can be dialed to a
simplifying limit.



WHY ARE WE HERE? CONFORMAL FIELD THEORIES ARE HARD

In presence of a symmetry there can be sectors of the theory

where anomalous dimension and OPE coefficients simplify.




THE IDEA

Study subsectors of the theory with fixed quantum number Q.

In each sector, a large
in a perturbative ex



CONCRETE RESULTS

We consider the O(N) vector model in three dimensions. In the IR it flows to a
conformal fixed point [Wilson & Fisher].

We find an explicit formula for the dimension of the lowest primary at fixed
charge:

_ S3/2 ~13/2 172 _ =1/2
Ag = 2\/50 +2y/Acy,Q"2-0.094 + 0(Q72)



SUMMARY OF THE RESULTS: 0(2)
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SCALES

We want to write a Wilsonian effective action.




SCALES

We want to write a Wilsonian effective action.




SCALES

* We look at a finite box of typical length R
® The U(1) charge Q fixes a second scale p1/2 ~Q"?/R
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For A <« p“ . tﬁe effective action is weakly coupled and
under perturbative control in powers of p™'.



100 GOOD TO BE TRUE'?
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700 GOOD TO BE TRUE?

Think of Regge trajectories.

The prediction of the theory is

M2, GeV?

m? o J(1+0(7))

but experimentally everything
works so well at small J that String
Theory was invented.




700 GOOD T0 BE TRUE?

The unreasonable effectiveness
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WHAT HAPPENED?

We started from a CFT.
There is no mass gap, there are no particles, there is no Lagrangian.

We picked a sector.
In this sector the physics is described by a semiclassical configuration plus
massless fluctuations.

The full theory has no small parameters but we can study this sector with a
simple effective field theory (EFT).

We are in a strongly coupled regime but we can compute physical observables
using perturbation theory.

» would you like to know more?

[§)



LARGE N VS. LARGE CHARGE




THE MODEL

¢@* model on R x = for N complex fields
N pv * * u * 2
Seleil =Y | dtdz [9 (Bui) (Buepi) + @i i + 5 (i i) ]
i=1

It flows to the WF in the IR limit u — o when ris fine-tuned.
We compute the partition function at fixed charge

N
2(01, ...,QN) = Tr[e'BH |_| 8(él _Qi)]
i=1

where
Q = I dzjp =i J d> [CP:CPi "-P?CPi]-

[$)



FIX THE CHARGE

Explicitly

[

_|-||

N :Z

JR(ce! Tr[e—BH H o6 o} ]
i=1

Since Q depends on the momenta, the integration is not trivial but well
understood.

n
Z5(Q) = J %e-.eo J. Dp; eI
-n

p(2nB)=e'®p(0)
n
. <]

q 2n
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FIX THE CHARGE

Explicitly

[

_|-||

N :Z

JR(ce! Tr[e—BH H o6 o} ]
i=1

Since Q depends on the momenta, the integration is not trivial but well
understood.

n
_n .
P(2nB)=e(0) Q
"dB e s®
= - e D .a [(P]
[ | owe

P(2nP)=¢(0)
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EFFECTIVE ACTION: COVARIANT DERIVATIVE

N
* R * *
Pre1=Y I dtd> ((DpCPi) (DHepy) + g Pi Pi T 2u(Q; cPi)z)
i=1
.0
Dop =00 +ige
Di¢ =0;p
Stratonovich transformation
N . * . N
SQ = Z [—iGiQi + J dtd> |:(DLI(PI) (DIp(PI) + (r+?\)cpi (PI:|]
i=1
Expand around the VEV

cpi=%Ai+ui, 7\=(p2—r)+7\
[§)



EFFECTIVE ACTION FOR A

We can now integrate out the u; and get an effective action for A alone
N 2 2 2
. o A- o . A- i oa
SeIA] = 21 [VB(B—'Z - m2)7' +Tr[log(-D},D}, + m? +1) ] - 7‘Tr(7\A7\)].
1=

Non-local action for A.
To be expanded order-by-orderin 1/N.



SADDLE POINT EQUATIONS

aSQ Z [VBAZ +2(116;, 3, m)]

8SQ B;,,,2 10
—= =-iQ+ -VAS + ——Z(s|9 2, m) =0
a6; B <=0
3s 62
aAQ VB(B' +m2)Ai = 0.
where
2 =3
C(s|6,2, m) = Z Z ((Znn —) + E(p)2 + m2) .
nezZ P

O



SADDLE POINT EQUATIONS

With some massaging, we find the final equations
1
F$ (Q) = mQ + NG(-3[, m),
1 Q
mC(zlz, m) = —N.
The control parameter is actually Q/N.

Dimensions of operators of fixed charge Q on R3 (state/operator):

1

AQ) = -
B

log Zs2 (Q).



SMALL Q/N

The zeta function can be expanded in perturbatively in small Q/N.
Result:
16 (n? -12) Q2

3n4N?2

* Expansion of a closed expression
® Start with the engineering dimension 1/2

® Reproduce an infinite number of diagrams from a fixed-charge one-loop

calculation



LARGE Q/N

If Q/N > 1 we can use Weyl's asymptotic expansion.
Tr(eAzt) = K,t"21,
n=0

The zeta function is written in terms of the geometry of Z (heat kernel

coefficients)



ORDER N




ORDER N




ORDER N




ORDER N

FSZ @ (%)3/2 N( )1/2
—No(%) " semmla) rolVe™)




ORDER N

-3/2
'907210(%) +O(e_ QKZN))




UNIVERSAL TERM: INTEGRATE ALL BUT ONE
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ORDER N°

The order N° terms are

7\v<6+6*))

95,4 = I dtds ((D,8)" (DH&) + (u? + &5 + N7

+ 15 .[ C|X1 dX2 A)\(X1 )7\(X2)D(X1 = X2)2
where D(x -y) is the propagator (D, DM + m?)1.
At low energies we can approximate the non-local term as
3 (12 \ 3 (312
J. dtdXA(x)“C(2|6,2, p) = 5c J dtd>A(x)
M

and we can integrate A out.

O



ORDER N°

The inverse propagator for o is

1/2(w? + p2 + 4p2) S[)
-Hw 1/2(002 + p2)

It describes a massive mode and a massless mode with dispersion
w2+%p2+...=0 w2+8p2+gp2+...=0

This is the conformal Goldstone that we have seen in the EFT.

Its contribution to the partition function is

Eg = 1lc<1/2|52) =-0.0937...

242
This is universal. Does not depend or@l or Q.
)



WAS IT WORTH IT?

Millions of troops
are on the move..




FINAL RESULT

A(Q) = (% + (’)(NO))(%)3/2 4 (ﬂ 4 O(NO))(E)”2 o

-0.0937...




FINAL RESULT

AQ) = (% 4 O(NO))(%)B/Z 4 (g 4 O(NO))(%)VZ o

-0.0937...

Leading coupling ¢s Subleading coupling ¢/

Tleeen Large-N: (1/6) N1
@ Lattice MC, this work R
T Lattice MC, literature I

0.50 17— (... Large-N: (2/3)N~12
@ Lattice MC, this work
1 Lattice MC, literature
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RESURGENCE AND THE LARGE CHARGE




RESULTS FROM LARGE N

In the double-scaling limit N — o, Q — « with § = Q/(2N) fixed.

F¥ (Q) = pQ + NG(-1[%, ),
NG HANEESS



RESULTS FROM LARGE N

In the double-scaling limit N — «, Q — « with § = Q/(2N) fixed.
The free energy per DOF f(§) = F/(2N) is a Legendre transform

doo(p)
du '

. . . 1
f(q) = sup(pg - (M), q w(y) = —§C<—%|Z M),
v
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.. - o _ doo(y) _ 1.1
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RESULTS FROM LARGE N

In the double-scaling limit N — «, Q — « with § = Q/(2N) fixed.
The free energy per DOF f(§) = F/(2N) is a Legendre transform

.. - o _ doo(y) _ 1.1
f(q)—Sﬂp(pq w(M)), q du W) = ZC( 1

C(s|Z, p) is the zeta function for the operator -A + pz.

1 dt s 2t At
Q(s|z, p)_mj T tSeH Tr( )

Large g is large p and is small t. The classical Seeley-de Witt problem:

\ R
Tr(em) ~ m(1 12t )



WARM UP: THE TORUS

_ a2
spec(A) = {—L—z(k1 + k2)|k1, ko € Z}.

The heat kernel trace is the square of a theta function:

4n2 2 2 4n2t
- (k§+k5)t =
Tr(em)= Z e L2 A !93(0,6 12 )] .

k1 ,k2 (S

For the small-t limit we Poisson-resum the series:

> hny=3 J h(p)e?"® dp
nez kez YR




THE TORUS

Grand potential

W) =-=C(-z[T*, ) = —[1+ 1+ .
W) =585l =T % k|2 p2L2 [[k[[pL

Free energy

) ) I oIkl v/3ma
£(§) = sup(ug - w(p)) = 1 1-Y& — 4.
D = sup(Hg - () = 574 % 8123

® perturbative expansion in p (here a single term) plus exponentially
suppressed terms controlled by the dimensionless parameter pL

* the free energy is written as a double expansion in the two parameters 1/§
and e" V419,

® more important than the “usual” instantons (’)(e’

O

O



THE SPHERE

On the two sphere spec(A) = {-£(¢ + 1) | £ € Ng} with multiplicity 2¢ + 1.
Again, we use Poisson resummation

> hmy =3 I h(p)e®™® dp
nezZ kez YR

to rewrite the heat kernel in terms of the imaginary error function

2
At\ -t/4 _ —(e+1/2)%t _ r_ > 2knr? nrk
Tr(e )e = €§0(2€+ e : 2k§Z( 1) [ 372 F(t1,2)

where

z
F(z) = e'22 I dte"t2 — THe‘Zz erfi(z)
0



SPHERE: ASYMPTOTIC EXPANSION

For small t

oo 2n+1
F(2) ~ Z (2n+1)!!(1) n+

n=0

z

2n+1

and

1 =) +1 1-2n
(A-pt) 1 -H"™ -2
T 47|~ = By, t"
r(e ) t ngo n! =

The series is asymptotic: the Seeley-de Witt coefficients diverge like n!:

_4\n+1 4 51-2n 1/2
a =\ e e )32 ~ 2n—n!.
e n! o n2/2+2n

the divergence implies the existence of non-perturbative corrections.

O



RESURGENCE

The key idea is that we should think in terms of transseries

H(t) =t—bo Z aE]O)tn o Z Cke—Ak/tt-bk Z ar(wk)tn’
n>0 k>1 n>0
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RESURGENCE

The key idea is that we should think in terms of transseries
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RESURGENCE

The key idea is that we should think in terms of transseries

Ho =t 5 a@t"+ 5 Ce™/trbec § alloe,
n>0 k>1 n>0

The coefficients of the non-perturbative part are encoded in the large-n
behavior of the perturbative piece:

Oy Sk (a0 (k) :
i k; 2ni A/BHhy (a89T(Bn +by) +af AT+ by - 1) +...)
= k

O



RESURGENCE

In our case, the a,, are

1

Fn+3)
—4\/’Z<1>

k=1 ( k)2n ’
Comparing the two expressions we find that for the trace of the heat kernel:

1 2 Ci _(k Ky 3/2 k
=1, b= Ac=@k? Xa{d =4 *kn¥?,  aly =o0.
B =7 k= (0 2ni 0 <) >0
The series around each exponential are truncated to only one term and the
non-perturbative correction to the heat kernel is

3/2 =
4i(E) Y (-kke O,
=



BOREL RESUMMATION




BOREL TRANSFORM

We need to make sense of the divergent series and the imaginary terms.




LATERAL TRANSFORM

If there are poles on the real positive axis there is an ambiguity

T

&%

s+ (H)(®) =s(H)(®) = I wbe‘WH(th)d—

w
C. w
sy (H) -s_(H) = (2ni)Zresidue
k

We need an independent definition of the non-perturbative effects to cancel
the imaginary ambiguity.

O



BOREL TRANSFORM FOR THE HEAT KERNEL ON S2

The Borel transform can be summed in terms of elementary functions

1 a 1
Hh)=- ) ——2—7"= ————
M=3 rgo Mn+3/2)  Jmrsin(y7)

and if we Laplace transform [Perrin, 1928]
2 J ®

E— YYy-—
Va2 o sin(y)

there are simple poles fory = kn, k =1, 2, .... The residues are

s(H)(®) =

e—yz/t
V32 sin(y)

@ ¢ .

)3/2 k2n?

(2ni) Res( , kn) = (-)k+1 4i]k|(%

O



MORE INGREDIENTS




WORLDLINE INTERPRETATION

We need a non-perturbative interpretation of these exponential terms.

We read the heat kernel as the partition function of a particle at inverse
temperature t and Hamiltonian H = —8(2) -/, i.e. a free quantum particle moving
onR x 2.

We can write the partition function as a path integral
Tr(e(ag+mt) =N J DX 75Xl
X(1)=X(0)

where the action is

1 (7 ST
S[X] = EI drg,, X" mX’ (1)
0



A TRANSSERIES FROM GEODESICS

In the limit t — O the path integral localizes on a sum over all the closed
geodesics y.

2
For each geodesic a perturbative series in t, weighted by e™(Y) /(49

Tr(e(ag*'mt) =N J DX e SIXI

X(1)=X(0)
by § (0 SR
=t Y alVt" + > e 4ty Y alvt",
n=0 y € closed geodesics n=0

the b, depend on the geometry. This is precisely the same structure predicted
by resurgence.

Now we have a geometric interpretation.

O



THE TORUS

The length of the geodesic is £(kq, ky) = Ly/kT + k3.

The integral is quadratic and the fluctuations around each geodesic give the
usual

101 1.2, 022 -1
N J Dh e @ Jo dTh )7+ =Ndet(l3$> =

s
4t 4nt’

h(1)=h(0)=0

O



THE TORUS

Now we can write the result of the path integral

Tr(em> =N J DX e SX] = A2 Z e S[Xc1-S[h]

X
X(1)=X(0) “h(1)=h(0)=0
L2 (kK +k3)
= N2 z e 4 J Dhe's[h],

2
kez h(1)=h(0)=0

L2 _L2)jk)2
=— |1+ z e 4
kez?

This is exactly what we had found before just by looking at the spectrum.
Now we can understand the non-perturbative effects in terms of closed
geodesics.

O



THE SPHERE

Closed geodesics on the sphere go around the equator k times




THE SPHERE

Closed geodesics on the sphere go around the equator k times

There is a zero mode because we can rotate the equator



THE SPHERE

Closed geodesics on the sphere go around the equator k times

There is a zero mode because we can rotate the equator

And an instability because we can slide off



THE SPHERE PATH INTEGRAL

At leading order we can just pick a coordinate system and expand the action
L = 62 +sin? (9)4)2
around the geodesic

0= (1) = 2nkT

a
2

so that the fluctuations give a massless and a massive mode

(2nk)2 1 . .
Sl 4t ), ¢ e o
kez

O



THE SPHERE PATH INTEGRAL

The h, fluctuation is massless and gives

Dh,, ex —l 1dTF\z =¥
P P 4t 0 ¢ (4I'It)1/2



THE SPHERE PATH INTEGRAL

The h, fluctuation is massless and gives

Dh,, ex —l 1dTF\z =+
P P 4t 0 ¢ (4I'It)1/2

For hg we need to work a bit more. Decompose in modes:

hg = V2 sin(nnT) A\, = 1 (n2 —4k2>

® azero mode forn = 2k
® 2n -1 unstable modes

Once we regularize the determinant we get

1
IDhe e><p[-41t Io dr (hé - (2nk>2h§)] - ii%%



BACK TO RESURGENCE

Putting it all together, the non-trivial geodesics give

k2n2

372 )
12.(¥) S kle

kez

The one-loop result perfectly cancels the imaginary ambiguity of the Borel sum!

2 2

1 3/2 k“n
Tr(e(A_Zﬁ) =s.M®F2(7) Y Drke T =Rels.(H)®)]
>



BACK TO RESURGENCE

We can write the exact expression for the grand potential (m? = p2 +1/4):

2 poo 2 - 1/2 3/2
o) = Re [Zrm J dy K2(2mry)] _r- 3 m 2ir’"m 2nrm,
0

ysin(y) 3 _ﬁ*—' . (4n)3/2




BACK TO RESURGENCE

We can write the exact expression for the grand potential (m? = p2 +1/4):

£ 1/23/2
2ir “m -2nrm

2rm? °°d Ko (2mry) =£ s.m,.er mo
0 3 24 (4n)3/2

w(p) =Re [ : m°-—+
ysin(y)

As a numerical test, we can compare with the convergent small-charge
expansion (g = 0.6)

=0.012777 296 63...

roo(mr =0.4)
small charge

=0.012777 297 69...

resurgence

reo(mr = 0.4)




OPTIMAL TRUNCATION




LESSONS FROM LARGE N

Let's go back to the EFT.
The effective action is identified with the asymptotic expansion: the grand
potential is the value of the action at the minimum x = put:

w(y) = LEFT'
X=Ht
where
3/2 1/2
LEET = @0 <apxa”x) + w4 <8px8“x) + ...,

In general the coefficients are unknown
BUT

Now we have a geometric understanding of the non-perturbative effects

O



LESSONS FROM LARGE N

Assume:
1. the large-charge expansion is asymptotic;
2. the leading pole in the Borel plane is a particle of mass p going around the
equator.

A CFT has no intrinsic scales.
The only dimensionful parameter is due to the fixed charge density.

The conformal dimension is a transseries

0
AQ) =Q¥2 Y f§,°>$+c1 QPre3mVa 5 Ly
n>0 n>0 Q

(we used p = 3fVQ/2 +....)



LESSONS FROM LARGE N

® The controlling parameter for the non-perturbative effects e
fixed by the leading term in the 1/Q expansion.

-3nkfyvVQ

IS

3an0

® The non-perturbative coefficient e 'V fixes the large-n behavior of

the perturbative series fﬁ]o).
fO ~ (2n)!1(3nkf)™

We don't know enough for a Borel resummation, but we can estimate an
optimal trucation (the value of n where ff,O)Q‘” is minimal)

N* 3an0 01/2
2

corresponding to an error of order €(Q) =

o



CAN WE UNDERSTAND THE LATTICE RESULTS NOW?

In0(2), 3 = 0.301(3), 50 N" = 0(vQ) and £(Q) = (’)(e“/a).

14

12

10

MC dafta —a— |
it

2 4 6 8 10
Q
This fit was obtaind with N = 3 terms.
For Q = 1 we get an error = 6 x 1072 and for Q = 11 the erroris = 5 x 107

(Comparedtoe™ = 4 x 1072 and e‘"m =3x107).
p

o N ~ [} [oe]
T T T T

O



WHAT HAS HAPPENED?

® The large-charge expansion of the Wilson-Fisher point is asymptotic

® In the double-scaling limit Q — o0, N — o we control the perturbative
expansion

* We can Borel-resum the expansion

* We have a geometric interpretation for the non-perturbative effects
® We can use this geometric interpretation also in the finite-N case

* We obtain an optimal truncation and estimate of the error

* The results are consistent with lattice simulations



CONCLUSIONS

® With the large-charge approach we can study strongly-coupled systems
perturbatively.

* Select a sector and we write a controllable effective theory.

* The strongly-coupled physics is (for the most part) subsumed in a
semiclassical state.

® Qual(nt)itative control of the non-pertubative effects.
* Compute the CFT data.
® Very good agreement with lattice (supersymmetry, large N).

® Precise and testable predictions.
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