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What happened?

We started from a conformal field theory (CFT).
There is no mass gap, there are no particles, there is no Lagrangian.

We picked a sector.

In this sector the physics is described by a semiclassical configuration plus massless
fluctuations.

The full theory has no small parameters but we can study this sector with a simple
effective field theory (EFT).
We are in a strongly coupled regime but we can compute physical observables using
perturbation theory.

would you like to know more?
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Large charge and supersymmetry

And Now for Something Completely Different

TheO(2) model has a isolated vacuum.
What happens when there is a flat direction?

Many known examples of (non-Lagrangian) N ≥ 2 SCFT in four dimensions.

Coulomb branch with a dimension-one moduli space: all the physics is encoded in a
single operator O and every chiral operator is just On .

We will write an effective action for a canonically-normalized dimension-one vector
multiplet Φ.
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Large charge and supersymmetry

Effective action

We have a single vector multiplet. The kinetic term is just

Lk = ∫d4θΦ2 + c.c. = |∂φ|2 + fermions + gauge fields

There will also be a WZ term for the Weyl symmetry and U(1) charge.
Because of N = 2, everything else is a D-term and does not contribute to protected
quantities.

LEFT = LK + αLWZ

The coefficient α fixes the a-anomaly of the EFT. It has to match the anomaly in the UV.

Claim: at large R-charge this action is all you need for any N = 2 theory (with
one-dimensional moduli space).

from
anom

aly
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Large charge and supersymmetry

Observables

Three-point function of the Coulomb branch operators〈
On1 (x1)On2 (x2)Ōn1+n2 (x3)

〉
=

Cn1 ,n2 ,n1+n2

|x1 – x3 |2n1Δ |x2 – x3 |2n2Δ

The OPE of O with itself is regular, so we can set x2 = x1 and the three-point function is
actually a two-point function.

Cn ,n–n ,n = |x1 – x2 |
2nΔ

〈
On(x1)Ōn(x2)

〉
= eqn–q0 = G2n

Q = nΔ is the controlling parameter (it’s the R-charge)
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Large charge and supersymmetry

Two-point function

〈
Φn(x1)Φ̄n(x2)

〉
= ∫Dφφn(x1)φ̄n(x2)e–Sk

We can just pull the sources in the action and minimize

Sk + Ssources ∝ k0 + ∫d4x [ ∂μφ∂μφ̄ – Q logφδ(x – x1) – Q log φ̄δ(x – x2)]
At the minimum:

qn = k1Q + k0 +Q log(Q) + (α + 1

2) log(Q) +O(Q0)
Corrections from quantum fluctuations in the path integral as a series in 1/Q.
No other tree-level terms.
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Large charge and supersymmetry

Two-point function: quantum corrections

1/Q is the loop-counting parameter because we are expanding around a VEV that
depends onQ.
Sum of a ground state piece and a series in 1/Q.

qn = k0 + k1Q +Q log(Q) + (α + 1

2) log(Q) +
∞

∑
m=1

km(α)
Qm

The interaction comes from the WZ term and can only depend on α.

Compute order-by-order

k

+

k

+

k

+

k

+

k

k1(α) = 1

2(α2 + α + 16)
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Large charge and supersymmetry

Integrability to the rescue

There is a better way.
Using localization one finds that the qn satisfy arXiv:0910.4963

∂τ∂τ̄qn = eqn+1–qn – eqn–qn–1

We have a Toda chain: an integrable system!
But there is a big difference between integrable and integrated.
Unless…

…we use the form that follows from the existence of the asymptotic expansion

qn(τ, τ̄) = B(τ, τ̄) + nA(τ, τ̄) + nΔ log(nΔ) + (α + 1

2) log(nΔ) +
∞

∑
m=1

km(α)
nm
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no τ
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Large charge and supersymmetry

Toda lattice + large charge

The Toda-lattice equation turns into a pair of coupled Liouville-like equations for A
and B and a difference equation for the τ-independent part.

We can actually solve the recursion relation, using the value of k1(α) found at one
loop.

qn = B(τ, τ̄) + nA(τ, τ̄) + log(Γ(nΔ + α + 1))
The log term is universal, only depends on α.

We have completely resummed the 1/Q expansion.
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Large charge and supersymmetry

Recursion relation

In terms of the generator O of the Coulomb branch we have:

〈
On(x1)Ōn(x2)

〉
= Cn(τ, τ̄)Γ(nΔ + α + 1)

|x1 – x2 |2nΔ

The coefficient Cn depends on the normalization of O(x).

Crucial: This form is valid for any N = 2 SCFT with dimension-one Coulomb branch.
Including non-Lagrangian theories.
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Large charge and supersymmetry

The linear term

In fact we can do better in the case of SQCD.

Cn = enA+B +O(e–κ√n),
and the Toda-lattice equation reduces to the Liouville equation for A:

∂∂̄A = 8eA .

The general solution depends on two arbitrary functions

eA =
∂f∂̄f̃

(1 – 4ff̃)2
.

We need one more ingredient: S-duality
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Large charge and supersymmetry

Back to Liouville

We look for the solution to the Liouville equation

∂σ∂σ̄Â(σ, σ̄) = 8eÂ(σ,σ̄) ,

where eÂ(σ,σ̄) is a modular form of weight (2, 2).

Transforming back to the τ coordinate we find

A(τ, τ̄) = log( 1

4(2 Im(τ) + 4/π log(2))2 ) +O(e2πiτ).
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Large charge and supersymmetry

Comparison with localization

How well does this work?
For the special case of SU(2) SQCD with Nf = 4 we can compare with localization.
arXiv:1602.05971
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Large charge and supersymmetry

Adding instantons

We can do better.

We have resummed the 1/Q expansion around one vacuum.
Exponential corrections coming from the next saddle in the path integral.
BPS particles going around the equator of the three-sphere.
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Large charge and supersymmetry

Comparison with localization
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Large charge and supersymmetry

Comparison with localization
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Large charge and supersymmetry

Comparison with bootstrap

For strongly coupled theories one can use bootstrap to place bounds on the
three-point coefficients with n = 1.
This is the worst possible situation for us. And still…
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Large charge and supersymmetry

Comparison with boostrap
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Taken from arXiv:2006.01847
would you like to know more?
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Conclusions

Conclusions

• With the large-charge approach we can study strongly-coupled systems
perturbatively.

• Select a sector and we write a controllable effective theory.

• The strongly-coupled physics is (for the most part) subsumed in a semiclassical
state.

• Qual(nt)itative control of the non-pertubative effects.

• Compute the CFT data.

• Very good agreement with lattice (supersymmetry, large N).

• Precise and testable predictions.
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