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Why are we here? Conformal field theories

extrema of the RG flow critical phenomena
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Why are we here? Conformal field theories are hard

Most conformal field theories (CFTs) lack nice limits where
they become simple and solvable.

@

No parameter of the theory can be dialed to a
simplifying limit.

O
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Bt od o EESS————————————————————
Why are we here? Conformal field theories are hard

In presence of a symmetry there can be sectors of the theory where
anomalous dimension and OPE coefficients simplify.
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The idea

- //_/

Study subsectors of the theory with fixed quantum number Q.

=y

In each sector, a large Q is the controlllng parameter
in a perturbative expansion.

VVVY
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~ Introduction
Concrete results

We consider the O(N) vector model in three dimensions. In the IR it flows to a
conformal fixed point [Wilson & Fisher].

We find an explicit formula for the dimension of the lowest primary at fixed charge:

_ ©3/2 1372 1/2 94 -1/2
A Q + 2+/nc Q -0.0 +0O(Q
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Summary of the results: O(2)
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~ Introduction
Scales

We want to write a Wilsonian effective action.
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~ Introduction
Scales

We want to write a Wilsonian effective action.
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~ Introduction
Scales

* We look at a finite box of typical length R
* The U(1) charge Q fixes a second scale p'/? ~ Q'?/R

12 Q2
<K NALp ~T<</\UV

Q|-

= @
For A <« p1/2 the effective action is weakly coupled and under perturbative control in

powers of p™"..
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I o o SS———————————————————————————
Too good to be true?
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I o o SS———————————————————————————
Too good to be true?

Think of Regge trajectories.

The prediction of the theory is E
~n" 5 B —
m? ocJ(1+0(s7)) =
but experimentally everything works o ]
so well at small J that String Theory i
was invented. ST ]
2l ]
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The unreasonable effectiveness
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I o o SS———————————————————————————
Selected topics in the LONE

®* O(2) model [Hellerman, DO, Reffert, Watanabe] [Monin, Pirtskhalava, Rattazzi, Seibold]
®* O(N) model [Alvarez-Gaumé, Loukas, DO, Reffert]
O holography [Loukas, DO, Reffert, Sarkar] [de la Fuente] [Guo, Liu, Lu, Pang]

[Giombi, Komatsu, Offertaler]
O Iarge N [Alvarez-Gaumé, DO, Reffert] [Giombi, Hyman]

O3 double-scaling [Badel, Cuomo, Monin, Rattazzi] [Arias-Tamargo, Rodriguez-Gomez, Russo]
[Antipin, Bersini, Sannino, Wang, Zhang] [Jack, Jones]

® non-relativistic CFTs [Kravec, Pal] [Hellerman, Swanson] [Favrod, DO, Reffert]
[DO, Reffert, Pellizzani]

* N =2 [Hellerman, Maeda] [Hellerman, Maeda, DO, Reffert, Watanabe]
[Bourget, Rodriguez-Gomez, Russo] [Grassi, Komargodski, Tizzano]

O bootstrap [Jafferis, Zhiboedov]
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I o o SS———————————————————————————
Today's talk

The EFT for the O(2) model in 2 + 1 dimensions

* An effective field theory (EFT) for a CFT.
® The physics at the saddle.
* State/operator correspondence for anomalous dimensions.

O



I o o SS———————————————————————————
Today's talk

The EFT for the O(2) model in 2 + 1 dimensions

Justify and prove all my claims from first principles

* well-defined asymptotic expansion (in the technical sense)
* justify why the expansion works at small charge
* compute the coefficients in the effective action in large-N

[$)



I o o SS———————————————————————————
Today's talk

The EFT for the O(2) model in 2 + 1 dimensions

Justify and prove all my claims from first principles

Use resurgence to reach small charge

® Borel resum the double-scaling Q — o, N — oo limit
® geometric interpretation of non-perturbative effects
® general structure of the corrections in the EFT

O
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I o o SS———————————————————————————
Today's talk

The EFT for the O(2) model in 2 + 1 dimensions

Justify and prove all my claims from first principles

Use resurgence to reach small charge

Use the large-charge expansion together with supersymmetry.

* qualitatively different behavior
® resum th%rge—charge expansion
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An EFT for a CFT

USE THE'S

YMMETRY
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The O(2) model

The simplest example is the Wilson-Fisher (WF) point of the O(2) model in three
dimensions.

* Non-trivial fixed point of the ¢* action

Lyy = 3P 3P - u(P P)?
* Strongly coupled

* In nature: *He.

Simplest example of spontaneous symmetry breaking.

* Not accessible in perturbation theory. Not accessible in 4 - €. Not accessible in
large N.

Lattice. Bootstrap.

O
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o o EEEEEEEEEEEEEEE———...
Charge fixing

We consider a subsector of fixed charge Q.
Generically, the classical solution at fixed charge breaks spontaneously U(1) — 0.

We have one Goldstone boson .

[§)



o EEE———————————————————
An action for x

Start with two derivatives:
f
LIx) = 3 3,x3,x - C>

(x is a Goldstone so it is dimensionless.)
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o EEE———————————————————
An action for x

Start with two derivatives:
f
LIx] = 3 3,x8yx - C®
(x is a Goldstone so it is dimensionless.)

We want to describe a CFT: we can dress with a dilaton

-2fo 2fo

e bfo~3 , € &R
> O X3ux-e " C +T(apoapo—f7)

n

Llo,x] =

The fluctuations of x give the Goldstone for the broken U(1), the fluctuations of o give
the (massive) Goldstone for the broken conformal invariance.

O



o o EEEEEEEEEEEEEEE———...
Linear sigma model

We can put together the two fields as
2 =o+ifyx
and rewrite the action in terms of a complex scalar

1
¢Q=—:=
V2f

We get

L] =3,® Hp-ERP @ -u(p @)
Only depends on dimensionless quantities b = f2f_ and u = 3(Cf?)3.
Scale invariance is manifest.
The field ¢ is some complicated function of the original .
O
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Centrifugal barrier

The O(2) symmetry acts as a shift on x.

Fixing the charge is the same as adding a centrifugal term #
®

Vv

O l®
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 AnEFTforaCFT
Ground state

We can find a fixed-charge solution of the type

X(t,x) = pt o(t, x) = %Iog(v) = const.,
where
1/2 1
IJ X Q + ... VvV X W

The classical energy is

E = c3,VQ¥% + ¢ ,RVQ2 + 0(Q71?)

O



~ AnEFTforaCFT
Fluctuations

The fluctuations over this ground state are described by two modes.
® A universal “conformal Goldstone”. It comes from the breaking of the U(1).

1
w=—=p
V2
® The massive dilaton. It controls the magnitude of the quantum fluctuations. All
quantum effects are controled by 1/Q.

2

oo=2p+p—

2p

(This is a heavy fluctuation around the semiclassical state. It has nothing to do
with a light dilaton in the full theory)

©
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Non-linear sigma model

Since o is heavy we can integrate it out and write a non-linear sigma model (NLSM) for
¥ alone.

LIX] = ka2 @ux3"x)*% + k1 2R@,x 3" x) 1% + ...

These are the leading terms in the expansion around the classical solution x = pt.
All other terms are suppressed by powers of 1/Q.

[$)



o EEE———————————————————
State-operator correspondence

The anomalous dimension on RY is the energy in the cylinder frame.
Rd R x 5o-1

H Yy
N

Sd—1

Protected by conformal invariance: a well-defined quantity.

O



Conformal dimensions

We know the energy of the ground state.
The leading quantum effect is the Casimir energy of the conformal Goldstone.

1 112
Ec = —({(-=|S°) =-0.0937...
6~ 552

This is the unique contribution of order Q0.

Final result: the conformal dimension of the lowest operator of charge Q in the O(2)
model has the form

_ ©3/2 132 172 -1/2
Ag = 2\/50 +2y/fc1,Q"%-0.094 + 0(Q7?)

O
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o EEE———————————————————
What happened?

We started from a CFT.
There is no mass gap, there are no particles, there is no Lagrangian.

We picked a sector.

In this sector the physics is described by a semiclassical configuration plus massless
fluctuations.

The full theory has no small parameters but we can study this sector with a simple EFT.
We are in a strongly coupled regime but we can compute physical observables using
perturbation theory.

O



Large N vs. Large Charge
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- largeNvs. large Charge
The model

q>4 model on R x 2 for N complex fields
N
* * u * 2
Selepil= ) J dtd> [gpv(apCPi) (Ovepi) + rep; pj + E(CPI <Pi) ]
i=1
It flows to the WF in the IR limit u — e when ris fine-tuned to R/8.
We compute the partition function at fixed charge

N
Z(Qq,...,Qp) = Tr[e'BH [5G -Qi)]
i=1

where
Q = I dzjf =i J. d> [‘-PT(Pi ‘CPT(Pi]-
Dimensions of operators of fixed charge Q on R3 (state/operator):
i log Zs2 (Q).
i ©
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leEepNwelarpCiEen
Fix the charge

Explicitly
"Rde N ea BH 6.0
Z= —L || e~ Trle” e i,
J_n i|=_|1 2n . |—|

i=1 i=1

Since Q depends on the momenta, the integration is not trivial but well understood.

n 9
=1

P(2nR)=e®p(0)
n
. 0
=l
P(2nP)=¢(0)

O



leEepNwelarpCiEen
Fix the charge

Explicitly
"Rde N ea BH 6.0
Z= —L || e~ Trle” e i,
J_n i|=_|1 2n . |—|

i=1 i=1

Since Q depends on the momenta, the integration is not trivial but well understood.

n .
Zz @e-leQ I Dq)I e-S[(.P]
(2nB)=e'®p(0)

_n 2n

P (2np)=p(0)

O



leEepNwelarpCiEen
Fix the charge

Explicitly

P(2nR)=e®p(0)
n , 0
_ J @eqeo I Dep, o> (@]
=l

P2nP)=p(0)

O



~ largeNvs. Llarge Charge
Effective actions

The covariant derivative approach:
N
* R * *
Slpl=) Jdtdz (<qu>i> (DHepy) + S @i @; +2u(Q; cpa)z)
i=1

where
.0
{D0<P =P +ige
Dip =9;p

Stratonovich transformation: introduce Lagrange multiplier A and rewrite the action as

Sq = é [—ieiQi 5 J dtds [(DL(pi)*<Dipcpi) + (g +7\)q>i*q>i”

Expand around the VEV

(PI=LAi+Ui, 7\=(p2—§)+3\

V2 {)
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leEepNwelarpCiEen
Saddle point equations

The integral over the ¢ is Gaussian.
We can perform it, e.g. in terms of zeta functions.

QUsl=, ) = Tr( (V8 - %))

With some massaging, we find the final equations
F3'(Q) = pQ+ NC(—%IZ H) = HQ - (W),
1 Q
PC(§|Z M) =-N

The control parameter is actually Q/N.
The free energy F(q) is the Legendre transform of the grand potential w(p).

O



SlempilimlarpCErmp
Large Q/N

If Q/N > 1 we can use Weyl's asymptotic expansion.

Tr(eA§t> = i Kt
n=0

The zeta function is written in terms of the geometry of > (heat kernel coefficients)

4n/ Q 1/2 R\/7 Q —1/2
s = 7(2_) " 2% 4——)
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Order N
AN/ Q 3/2 N/ Q 1/2
For(Q) = (2 =
s2(Q) = =3 (ZN) +3(2N)
_ﬂ(g)“_ 71N (3)‘3’2%(6-\/@)
360 \2N 90720 \ 2N
O
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Order N

< ) :



Order N

AN/ Q 3/2 N/ Q 1/2
Foo(Q) = N (2 M=
s2(Q) = =3 (ZN) +3(2N)
_ﬂ(g)“_ 71N (8)_3/2+@(e—\/W)
360\ 2N 90720\ 2N
O
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Order N

AN/ Q 3/2 N/ Q 1/2
Foo(Q) = N (2 M=
s2(Q) = =3 (ZN) +3(2N)
_ﬂ(g)“_ 71N (8)_3/2+@(e—\/W)
360\ 2N 90720\ 2N
O
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Order N

@
e 2
o
AN d 3/2° N 5061/2
2@ -(5) +3(5)
3 \2N 3\2N
IN(QE TN
360\ 2N 90720

©
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Where is the universal Goldstone?

see/the Goldstones

'h
e

L) fields \we separate to

o

» .
"~ the fields we
start.with

fields in|the|pathlintegral
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~ largeNvs. Llarge Charge
Was it worth it?

Millions of troops
are on the move..




~ largeNvs. Llarge Charge
Final result

AQ) = (? + 0(1))(%)3/2 + (g + 0(1))(3)1/2 .

-0.0937...

‘ ) :



~ largeNvs. Llarge Charge
Final result

AQ) = (? + 0(1))(3)3/2 + (g + 0(1))(3)1/2 -

2N 2N
-0.0937...
07—
0.6} 1 0.4l
0.5F
04f 03
S o =
© 03f o © ool
0.2F
ol 0.1}
00g ] 0.0k
0 2 4 6 8 10 0 2 4 6 8
N

Domenico Orlando | Vector models at large charge (and a bit of supersymmetry)



Resurgence and the large charge

Domenico Orlando



MR g e Tand el g o o
Results from large N

O(2N) at criticality in 1 + 2 dimensions on R x 3. Double-scaling limit N — «, Q — «
with § = Q/(2N) fixed.

FS(Q) = pQ + Ng(-52, ),

TG HANEESS

©
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GEsiEeencldnEepdinee
Results from large N
O(2N) at criticality in 1 + 2 dimensions on R x 2. Double-scaling limit N — e, Q —

with § = Q/(2N) fixed.
The free energy per DOF f(§) = F/(2N) is

N N 1
f(§) = sup(pd - w(p)), () =-55(51% 1,
v

O



Results from large N

O(2N) at criticality in 1 + 2 dimensions on R x >. Double-scaling limit N — e, Q — o
with § = Q/(2N) fixed.
The free energy per DOF f(§) = F/(2N) is

N N 1
f(§) = sup(pd - w(p)), () =-55(51% 1,
v

C(s|2, p) is the zeta function for the operator -A + pz. In Mellin representation

_ 1 [Tdts 2t (ot
C(s|2, 1) ) Jo . tPe Tr(e )

O



_ Resurgence and the large charge
Results from large N
O(2N) at criticality in 1 + 2 dimensions on R x >. Double-scaling limit N — e, Q — o

with § = Q/(2N) fixed.
The free energy per DOF f(§) = F/(2N) is

N N 1
f(§) = sup(pd - w(p)), () =-55(51% 1,
v

C(s|2, p) is the zeta function for the operator -A + pz. In Mellin representation

_ 1 [Tdts 2t (ot
C(s|2, 1) ) Jo . tPe Tr(e )

Large g is large p and is small t. The classical Seeley-de Witt problem:

AV R
Tr(e t) ~ H(1 + Et+ )
O
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_ Resurgence and the large charge
The torus

As a warm-up: 2 = i
4n? 2
spec(A) = {——(k 3+ k2)|k1 ko, € Z}.

It follows that the heat kernel trace is the square of a theta function:

4r| 2 4r|2t
(k +k3)t -
Tr(em>= > e 2 [63(O,e 12 )] .
k1,k2€Z

We are interested in the small-t limit.
For this reason we Poisson-resum the series:

2 2,2
L e 12 k22
Tr(eAt)=|: (‘I+ Ze 4 )] =—|1+ Z e 4
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The torus

Grand potential

W) =-=C(-5|T°, ) = ———| 1+ 1+ .
272 12n |k p2L2 [[k|[pL

Free energy

A A 4/ .39 o lIkllv/4n§
f(q) = sup(pg-w) = =—§”1- ) ———+...|.
p 3t K 8lkI*ng
® perturbative expansion in p (here a single term) plus exponentially suppressed
terms controlled by the dimensionless parameter pL
* the free energy is written as a double expansion in the two parameters 1/g and

® non-perturbative effects more importT/t than the “usual” instantons (’)(e'
)
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RS Ut nceland ol ot ool
The sphere

On the two sphere spec(A) = {-£({ + 1) | £ € Ny} with multiplicity 2¢ + 1.

Again, we use Poisson resummation

n+1 1-2n
(1 2 )antn

Tr(em)e'w' _ Z (20 + 1)e—(£+1/2)2t % i

|
>0 n:

The series is asymptotic: the Seeley-de Witt coefficients diverge like n!:

_a\n+1 .4 51-2n 1/2
-1 (1-2 )B2n 5 2n n
n! n5/2+2n

an =

this divergence is reflected in the existence of non-perturbative corrections.

O



RS Ut nceland ol ot ool
Resurgence

The key idea is that we should think in terms of transseries

n>0 k>1 n>0

O



Resurgence

The key idea is that we should think in terms of transseries

Ho =t 5 a@t + § Ce™/tPe § alor,
k>1 n>0

O



Resurgence

The key idea is that we should think in terms of transseries

n>0 k>1 n>0
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RS Ut nceland ol ot ool
Resurgence

The key idea is that we should think in terms of transseries

Ho =tPo 5 a@th+ 5 Ce™tebe § a0,
n>0 k>1 n>0

The coefficients of the non-perturbative part are encoded in the large-n behavior of
the perturbative piece:

0 - G 1 (k) k) .
°n k; 2ni AVB+by (a8Or(Bn + by +afOATBn +b - 1) +..)
= k

O



_ Resurgence and the large charge
Borel resummation

Domenico Orlando



Borel transform

We need to make sense of the divergent series and the imaginary terms.

Ht) = ) apt" H(T) = T
ngo " ngo F(Bn+b)
Jw b -wpy B dw
s(H)(t) = w-e M H({wP ) —
0 W

O
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_ Resurgence and the large charge
Lateral transform

If there are poles on the real positive axis there is an ambiguity

T

% % % Cy
@

s, (H)(t) = s(H)(t) = J wbe‘WH(tw5>dWW

Cs
sy (H) -s_(H) = (2ni) ) residue
k
We need an independent definition of the non-perturbative effects to cancel the

imaginary ambiguity. {)
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More ingredients

L T
.-F‘- -%h

Domenico Orlando
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RS Ut nceland ol ot ool
Worldline interpretation

We need a non-perturbative interpretation of these exponential terms.

We read the heat kernel as the partition function of a particle at inverse temperature t
and Hamiltonian H = —8% - A, i.e. a free quantum particle movingon R x 3.

We can write the partition function as a path integral
Tr(e(a%+A)t) =N J DX e X

X(1)=X(0)

where the action is

1 (] .
S[X] = " Jo dr g, X" (MX"(T)

O



RS Ut nceland ol ot ool
A transseries from geodesics

In the limitt — O the path integral localizes on a sum over all the closed geodesics y.

2
For each geodesic a perturbative series in t, weighted by e/(Y)™/(40

Tr(e(a(2>+A)t) =N J DX e SX]

X(1)=X(0)
by S (0 RV
=tP0 5 alt" + > e Aty Y alrtn,
n=0 y € closed geodesics n=0

the b, depend on the geometry.
This is precisely the same structure predicted by resurgence.

Now we have a geometric interpretation.
O
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The torus

In the case of the torus, closed geodesics are labelled by two integers (kq, ky)

The length of the geodesic is £(kq, ko) = Ly/kf + k3.

The integral is quadratic and the fluctuations around each geodesic give the usual

101 2132 0 282 =
N Dhea Jo dTh )"+ =Ndet(l a%) 1
4t 4nt

h(1)=h‘0)=0

O



_ Resurgence and the large charge
The torus

Now we can write the result of the path integral

Tr(em) =N J‘ DX e>X = A2 Z J eSXal-Sth

X
X(1)=X(0) “h(1)=h(0)=0
L2 (k7 +k3)
=N|_2 z e s J- Dh e—S[h],
2
kez h(1)=h(0)=0
12 ki
=—11+ CH
4nt! 22
keZ

This is exactly what we had found before just by looking at the spectrum.
Now we can understand the non-perturbative effects in terms of closed geodesics.

O



RS Ut nceland ol ot ool
The sphere

Closed geodesics on the sphere go around the equator k times

O



RS Ut nceland ol ot ool
The sphere

Closed geodesics on the sphere go around the equator k times

We need to sum over the fluctuations hCP and hg

O



RS Ut nceland ol ot ool
The sphere

Closed geodesics on the sphere go around the equator k times

SsSNe”

We need to sum over the fluctuations hCP and hg

There is a zero mode because we can rotate the equator

O



RS Ut nceland ol ot ool
The sphere

Closed geodesics on the sphere go around the equator k times

NS~ = ——

We need to sum over the fluctuations h, and hg
There is a zero mode because we can rotate the equator
And an instability because we can slide off

O
| Vectormodels at large charge (and a bit of supersymmetry)
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RS Ut nceland ol ot ool
The sphere path integral

The hy, fluctuation is massless and gives

Dh,, ex —l 1dTH2 =;
R ITH P 7R

O



RS Ut nceland ol ot ool
The sphere path integral

The hy, fluctuation is massless and gives

Dh,, ex —l 1dTH2 =;
R ITH P 7R

For hg we need to work a bit more. Decompose in modes:
hg = V2sin(nnT) A, = n (nz _4|<2)

® azero mode for n = 2k
® 2k -1 unstable modes
Once we regularize the determinant we get

1 (1 -2 2,2 on k
Dhg exp T . dT(he—(Zl‘lk) he) =+j——0=
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RS Ut nceland ol ot ool
Back to resurgence

The one-loop result perfectly cancels the imaginary ambiguity of the Borel sum!

(A-1t (n\3/2 (<
Tr(e 4 ) =s, (H)®) :F2|(¥) 2 (-1)*ke t =Re[ss(H)(t)]
k>1
And from here we can write the exact expression for the grand potential
(m? = p? + 1/4):

2 oo 2 - 1/23/2
6>() = Re [Zrm J q K2(2mry)] 3 m 2ir > onem
0

.
— +
3 24 (4m)3/2
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Back to resurgence

The one-loop result perfectly cancels the imaginary ambiguity of the Borel sum!

(A-1t (n\3/2 (<
Tr(e 4 ) =s, (H)®) :F2|(¥) Z (-1)*ke t =Re[ss(H)(t)]
k>1
And from here we can write the exact expression for the grand potential
(m? = p? + 1/4):

2 oo 2 - 1/23/2
6>() = Re [Zrm J' q K2(2mry)] 3 m 2ir > onem
0

.
— +
3 24 (4m)3/2

As a numerical test, we can compare with the convergent small-charge expansion
(g = 0.6)

=0.012777 296 63...

small charge

reo(mr = 0.4)

roo(mr = 0.4)

=0.012777 297 69... {)

resurgence
Domenico Orlando




Optimal truncation
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MR g e Tand el g o o
Lessons from large N

Let's go back to the EFT.

The effective action is identified with the asymptotic expansion: the expression we
found for the grand potential is the value of the action at the minimum x = pt:

w(y) = '—EFT’
X=pt

where

3/2 1/2
LepT =wo(apxavx) + i (apxavx) T
In general the coefficients are unknown

BUT

Now we have a geometric understanding of the non—perturaative effects
)
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MR g e Tand el g o o
Lessons from large N

Assume:
1. the large-charge expansion is asymptotic;

2. the leading pole in the Borel plane is a particle of mass p going around the
equator.

A CFT has no intrinsic scales.
The only dimensionful parameter is due to the fixed charge density.

The conformal dimension is a transseries
_ 32 o 1 by -3nkf{9vQ 1 1
A(Q)_Q an @"'C‘]Q‘le 0 an W-i-.”
n>0 n>0

(we used p = 3f(§0)\/6/2 +....)

O



MR g e Tand el g o o
Lessons from large N

* The controlling parameter for the non-perturbative effects e3mf0VQ is fixed by
the leading term in the 1/Q expansion.

(0)
-3nkfy

® The non-perturbative coefficient e VA fives the large-n behavior of the

perturbative series f{0.
(O) (2n)|(3r||<f(o))'

We don't know enough for a Borel resummation, but we can estimate an optimal
trucation (the value of n where ng)Q’” is minimal)

N* 3I'IKfO 01/2
2

corresponding to an error of ordere(Q) = O

(=)

O



_ Resurgence and the large charge
Can we understand the lattice results now?

InO(2), f§ = 0.301(3), 50N = O(vQ) and (Q) = O(e"/a).

MC data —=— |
fit

2 4 & 8 10
Q
This fit was obtaind with N = 3 terms.
For Q = 1 we getan error = 6 x 107 and for Q = 11 the erroris ~ 5 x 107

(Comparedtoe™ = 4 x 102 and ™11 = 3 x 107). {)




RS Ut nceland ol ot ool
What has happened?

The large-charge expansion of the Wilson-Fisher point is asymptotic

In the double-scaling limit Q — «, N — o we control the perturbative expansion
* We can Borel-resum the expansion

* We have a geometric interpretation for the non-perturbative effects

® We can use this geometric interpretation also in the finite-N case

We obtain an optimal truncation and estimate of the error

The results are consistent with lattice simulations

O
| Vectormodels at large charge (and a bit of supersymmetry)
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WEEREERREIE S EEIICy
And Now for Something Completely Different

The O(2) model has a isolated vacuum.
What happens when there is a flat direction?

Many known examples of (non-Lagrangian) V' > 2 SCFT in four dimensions.

Coulomb branch with a dimension-one moduli space: all the physics is encoded in a
single operator O and every chiral operator is just O".

We will write an effective action for a canonically-normalized dimension-one vector
multiplet ©.

&)



_ largecharge and supersymmetry
Effective action

We have a single vector multiplet. The kinetic term is just

Ly = J d*0®? +cc. = ]aq)\z + fermions + gauge fields

O



_ largecharge and supersymmetry
Effective action

We have a single vector multiplet. The kinetic term is just
Ly = J d*0®? +cc. = ]acp\z + fermions + gauge fields

There will also be a WZ term for the Weyl symmetry and U(1) charge.
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_ largecharge and supersymmetry
Effective action

We have a single vector multiplet. The kinetic term is just
Ly = J d*0®? +cc. = ]acp\z + fermions + gauge fields

There will also be a WZ term for the Weyl symmetry and U(1) charge.
Because of N = 2, everything else is a D-term and does not contribute to protected
quantities.

LEFT = L + alyy

O



Effective action

We have a single vector multiplet. The kinetic term is just
Ly = J d*0®? +cc. = ]acp\z + fermions + gauge fields

il also be a WZ term for the Weyl symmetry and U(1) charge.
= 2, everything else is a D-term and does not contribute to protected

LEFT

= LK + OLWZ
The coefficient a fixes the a-anomaly of the EFT. It has to match the anomaly in the UV.

Claim: at large R-charge this action is all you need for any A/ = 2 theory (with
one-dimensional moduli space).
O
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_ largecharge and supersymmetry
Observables

Three-point function of the Coulomb branch operators

Cn1 N2, Ny +n2

<o”1 (x1)OM2 (x2)OM 12 (x3)> -
Ixq -x3[2M18 |x; - xg[2n28

The OPE of O with itself is regular, so we can set x, = xq and the three-point function is
actually a two-point function.

cnn-nn |X1 _X2|2nA <On (X1 ya" (X2)> =9 % = GZn

Q = nA is the controlling parameter (it's the R-charge)

O



WEEREERREIE S EEIICy
Two-point function

<cl>” (X1 )d)”(x2)> - J Dep " (x1)p" (xp)e*
We can just pull the sources in the action and minimize

Sk * Ssources ko + .[ d4x[8pcpapcb— Qlog @d(x-x1)-Qlog ch(x—xz)]
At the minimum:

a, = kyQ+kg + Qlog(Q) + (o -~ %) log(Q) + O(QO)

Corrections from quantum fluctuations in the path integral as a series in 1/Q.
No other tree-level terms. C
)
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Two-point function: quantum corrections

1/Q is the loop-counting parameter because we are expanding around a VEV that

depends on Q.
Sum of a ground state piece and a series in 1/Q.

— (o)

n=k0+k1Q+Q|og(Q)+(a+%)|og 2_1

The interaction comes from the WZ term and can only depend on a.

O



Two-point function: quantum corrections

1/Q is the loop-counting parameter because we are expanding around a VEV that

depends on Q.
Sum of a ground state piece and a series in 1/Q.

n=k0+k1Q+Q|og(Q)+(q+%)|og i (O)
m=1

The interaction comes from the WZ term and can only depend on a.
Compute order-by-order

OO -8 () O—

kq(a) = %(oz +o+%)

Domenico Orlando



Integrability to the rescue

There is a better way.
Using localization one finds that the g, satisfy arxiv:0910.4963

aTa}qn = @%n+179 _ g9 9n1

We have a Toda chain: an integrable system!

But there is a big difference between integrable and integrated.
Unless...

O
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Integrability to the rescue

There is a better way.
Using localization one finds that the g, satisfy arxiv:0910.4963

aTa}qn = @%n+179 _ g9 9n1

We have a Toda chain: an integrable system!

But there is a big difference between integrable and integrated.
Unless...

...we use the form that follows from the existence of the asymptotic expansion

7 = - 1 < kmp(@)
g, (T, T) =B (7, T) + nA(T,T) + nAlog(nA) + (o + 5) log(nA) + 21 ”r“]—m
i

©
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Integrability to the rescue

There is a better way.
Using localization one finds that the g, satisfy arxiv:0910.4963

aTa}qn = @%n+179 _ g9 9n1

We have a Toda chain: an integrable system!

But there is a big difference between integrable and integrated.
Unless...

...we use the form “Iows from the existence of the asymptotic expansion

7 = - 1 < kmp(@)
g, (T, T) =B (7, T) + nA(T,T) + nAlog(nA) + (o + 5) log(nA) + 21 ”r“]—m
i

O
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WEEREERREIE S EEIICy
Toda lattice + large charge

The Toda-lattice equation turns into a pair of coupled Liouville-like equations for A
and B and a difference equation for the T-independent part.

We can actually solve the recursion relation, using the value of k; (a) found at one
loop.

gn = B(1,T) + nA(T,7) + log(T(nA +a + 1))

The log term is universal, only depends on a.

We have completely resummed the 1/Q expansion.

O



~ largecharge and supersymmetry
Recursion relation

In terms of the generator O of the Coulomb branch we have:

FT[nA+a+1)

(0" (x1)0"(x2)) = Co (7, 7) T

Xq -

The coefficient C,, depends on the normalization of O(x).

Crucial: This form is valid for any A/ = 2 SCFT with dimension-one Coulomb branch.
Including non-Lagrangian theories.

O



~ largecharge and supersymmetry
The linear term

In fact we can do better in the case of SQCD.
Cn — enA+B +(’)(e'K\/ﬁ),
and the Toda-lattice equation reduces to the Liouville equation for A:
A = 8e”.
The general solution depends on two arbitrary functions
oA = afaf~ .
(1 - 4fF)2
We need one more ingredient: S-duality

O



_ largecharge and supersymmetry
Back to Liouville

We look for the solution to the Liouville equation
9,95A(0, 0) = 8eA@9,

where eA“’"_’) is a modular form of weight (2, 2).

Transforming back to the T coordinate we find

1

A(T,T) = log 5
4(2Im(T) + 4/nlog(2))

+ (’)(eZ”iT).

O



WEEREERREIE S EEIICy
Comparison with localization

How well does this work?

For the special case of SU(2) SQCD with N¢ = 4 we can compare with localization.
arXiv:1602.05971

al z
2f ]
L ] n
or 1 o
2F 1] W2

=
S 1
< r m>5
4 - 1 m10
6 | m20
[ T ] E35
-8 ]
0 10
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Comparison with localization

How well does this work?
For the special case of SU(2) SQCD with N¢ = 4 we can compare with localization.
arXiv:1602.05971
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Adding instantons

We can do better.

We have resummed the 1/Q expansion around one vacuum.
Exponential corrections coming from the next saddle in the path integral.
BPS particles going around the equator of the three-sphere.

Domenico Orlando



Comparison with localization

Gn(7)
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Comparison with localization

u(7)
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=gl charg el o eyt
Comparison with bootstrap

For strongly coupled theories one can use bootstrap to place bounds on the
three-point coefficients with n = 1.
This is the worst possible situation for us. And still...

£
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Comparison with boostrap

)\32
4-' X Ho
] =
_ > H
3 . SUN)
1 --- MFT
3 >
] % .
2 ) D —————=ieieiuigiinisie il
11
0 L L S s S B S B B S IASO
1.0 1.5 2.0 2.5 3.0 =
Taken from arXiv:2006.01847 s G
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Conclusions
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~ Conclusions
Conclusions

* With the large-charge approach we can study strongly-coupled systems
perturbatively.

® Select a sector and we write a controllable effective theory.

® The strongly-coupled physics is (for the most part) subsumed in a semiclassical
state.

* Qual(nt)itative control of the non-pertubative effects.

* Compute the CFT data.

* Very good agreement with lattice (supersymmetry, large N).
® Precise and testable predictions.

O
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