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Introduction

Who’s who

L. Álvarez Gaumé (SCGP and CERN);
D. Banerjee (Calcutta);
S. Chandrasekharan (Duke);
S. Hellerman (IPMU);
S. Reffert, N. Dondi, I. Kalogerakis , R. Moser, V. Pellizzani, T. Schmidt (AEC Bern);
F. Sannino (CP3-Origins and Napoli);
M. Watanabe (Weizmann).
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Introduction

Why are we here? Conformal field theories

extrema of the RG flow critical phenomena
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Introduction

Why are we here? Conformal field theories are hard

Most conformal field theories (CFTs) lack nice limits where
they become simple and solvable.

No parameter of the theory can be dialed to a
simplifying limit.
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Introduction

Why are we here? Conformal field theories are hard

In presence of a symmetry there can be sectors of the theory where
anomalous dimension and OPE coefficients simplify.
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Introduction

The idea

Study subsectors of the theory with fixed quantum numberQ.

In each sector, a largeQ is the controlling parameter
in a perturbative expansion.
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Introduction

Concrete results

We consider theO(N) vector model in three dimensions. In the IR it flows to a
conformal fixed point [Wilson & Fisher].

We find an explicit formula for the dimension of the lowest primary at fixed charge:

ΔQ =
c3/2
2
√
π
Q3/2 + 2

√
πc1/2Q

1/2 – 0.094 +O(Q–1/2)
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Introduction

Summary of the results: O(2)
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Introduction

Scales

We want to write aWilsonian effective action.

Choose a cutoff Λ, separate the fields into high and low
frequency φH , φL and do the path integral over the
high-frequency part:

eiSΛ(φL)= ∫DφH eiS(φH ,φL)
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Introduction

Scales

We want to write aWilsonian effective action.

Choose a cutoff Λ, separate the fields into high and low
frequency φH , φL and do the path integral over the
high-frequency part:

eiSΛ(φL)= ∫DφH eiS(φH ,φL)too
har

d
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Introduction

Scales

• We look at a finite box of typical length R

• The U(1) chargeQ fixes a second scale ρ1/2 ~ Q1/2/R

1

R
� Λ� ρ1/2 ~

Q1/2

R
� ΛUV

For Λ� ρ1/2 the effective action is weakly coupled and under perturbative control in

powers of ρ–1 .
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Introduction

Too good to be true?
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Introduction

Too good to be true?

Think of Regge trajectories.
The prediction of the theory is

m2 ∝ J(1 +O(J–1))
but experimentally everything works
so well at small J that String Theory
was invented.

FIG. 2. The (n, M2)-trajectories for the states a0(10++), a2(12++) and a4(14++) with a) µ2 = 1.38 GeV2 and b) µ2 = 1.10
GeV2; Two variants for the f2(02

++)-trajectories with the slope parameter c) µ2 = 1.38 GeV2 and d) µ2 = 1.10 GeV2. The
f0(00

++)-trajectories for e) real resonance states and f) K-matrix pole states. As in Fig. 1, the open circles stand for states
predicted by the present classification.

5
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Introduction

Too good to be true?

The unreasonable effectiveness

of the large charge expansion.
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Selected topics in the LQNE

• O(2) model [Hellerman, DO, Reffert, Watanabe] [Monin, Pirtskhalava, Rattazzi, Seibold]

• O(N) model [Álvarez-Gaumé, Loukas, DO, Reffert]

• holography [Loukas, DO, Reffert, Sarkar] [de la Fuente] [Guo, Liu, Lu, Pang]

[Giombi, Komatsu, Offertaler]

• large N [Álvarez-Gaumé, DO, Reffert] [Giombi, Hyman]

• ε double-scaling [Badel, Cuomo, Monin, Rattazzi] [Arias-Tamargo, Rodriguez-Gomez, Russo]

[Antipin, Bersini, Sannino, Wang, Zhang] [Jack, Jones]

• non-relativistic CFTs [Kravec, Pal] [Hellerman, Swanson] [Favrod, DO, Reffert]

[DO, Reffert, Pellizzani]

• N = 2 [Hellerman, Maeda] [Hellerman, Maeda, DO, Reffert, Watanabe]

[Bourget, Rodriguez-Gomez, Russo] [Grassi, Komargodski, Tizzano]

• bootstrap [Jafferis, Zhiboedov]
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Today’s talk

The EFT for theO(2) model in 2 + 1 dimensions

• An effective field theory (EFT) for a CFT.
• The physics at the saddle.
• State/operator correspondence for anomalous dimensions.

Justify and prove all my claims from first principles

Use resurgence to reach small charge

Use the large-charge expansion together with supersymmetry.
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Introduction

Today’s talk

The EFT for theO(2) model in 2 + 1 dimensions

Justify and prove all my claims from first principles

• well-defined asymptotic expansion (in the technical sense)
• justify why the expansion works at small charge
• compute the coefficients in the effective action in large-N

Use resurgence to reach small charge

Use the large-charge expansion together with supersymmetry.
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Introduction

Today’s talk

The EFT for theO(2) model in 2 + 1 dimensions

Justify and prove all my claims from first principles

Use resurgence to reach small charge

• Borel resum the double-scalingQ → ∞,N → ∞ limit
• geometric interpretation of non-perturbative effects
• general structure of the corrections in the EFT

Use the large-charge expansion together with supersymmetry.
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Introduction

Today’s talk

The EFT for theO(2) model in 2 + 1 dimensions

Justify and prove all my claims from first principles

Use resurgence to reach small charge

Use the large-charge expansion together with supersymmetry.

• qualitatively different behavior

• resum the large-charge expansion
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An EFT for a CFT

An EFT for a CFT
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An EFT for a CFT

TheO(2) model

The simplest example is the Wilson–Fisher (WF) point of theO(2) model in three
dimensions.

• Non-trivial fixed point of the φ4 action

LUV = ∂μφ
* ∂μφ – u(φ*φ)2

• Strongly coupled

• In nature: 4He.

• Simplest example of spontaneous symmetry breaking.

• Not accessible in perturbation theory. Not accessible in 4 – ε. Not accessible in
large N.

• Lattice. Bootstrap.
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An EFT for a CFT

Charge fixing

We consider a subsector of fixed chargeQ.
Generically, the classical solution at fixed charge breaks spontaneously U(1) → ∅.

We have one Goldstone boson χ.
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An EFT for a CFT

An action for χ

Start with two derivatives:

L[χ] = fπ
2
∂μχ ∂μχ – C

3

(χ is a Goldstone so it is dimensionless.)

We want to describe a CFT: we can dress with a dilaton

L[σ, χ] = fπe
–2fσ

2
∂μχ ∂μχ – e

–6fσC3 +
e–2fσ

2 (∂μσ∂μσ – ξRf2 )
The fluctuations of χ give the Goldstone for the broken U(1), the fluctuations of σ give
the (massive) Goldstone for the broken conformal invariance.
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An EFT for a CFT

Linear sigma model

We can put together the two fields as

Σ = σ + ifπχ

and rewrite the action in terms of a complex scalar

φ =
1

√
2f
e–fΣ

We get

L[φ] = ∂μφ* ∂μφ – ξRφ*φ – u(φ*φ)3

Only depends on dimensionless quantities b = f2 fπ and u = 3(Cf2)3 .
Scale invariance is manifest.
The field φ is some complicated function of the original φ.
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An EFT for a CFT

Centrifugal barrier

TheO(2) symmetry acts as a shift on χ.
Fixing the charge is the same as adding a centrifugal term ∝ 1

|φ|2
.

|φ 2

V

original |φ| 6

centrifugal

barrier

new vacuum
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An EFT for a CFT

Ground state

We can find a fixed-charge solution of the type

χ(t, x) = μt σ(t, x) = 1

f
log(v) = const.,

where

μ ∝ Q1/2 +… v ∝ 1

Q1/2

The classical energy is

E = c3/2VQ
3/2 + c1/2RVQ

1/2 +O(Q–1/2)
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An EFT for a CFT

Fluctuations

The fluctuations over this ground state are described by two modes.

• A universal “conformal Goldstone”. It comes from the breaking of the U(1).

ω =
1
√
2
p

• Themassive dilaton. It controls the magnitude of the quantum fluctuations. All
quantum effects are controled by 1/Q.

ω = 2μ +
p2

2μ

(This is a heavy fluctuation around the semiclassical state. It has nothing to do
with a light dilaton in the full theory)
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An EFT for a CFT

Non-linear sigma model

Since σ is heavy we can integrate it out and write a non-linear sigma model (NLSM) for
χ alone.

L[χ] = k3/2(∂μχ ∂μχ)3/2 + k1/2R(∂μχ ∂μχ)1/2 +…

These are the leading terms in the expansion around the classical solution χ = μt.
All other terms are suppressed by powers of 1/Q.
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An EFT for a CFT

State-operator correspondence

The anomalous dimension on Rd is the energy in the cylinder frame.

ΔSd–1

Rd

H

R × Sd–1

Sd–1

Protected by conformal invariance: a well-defined quantity.
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An EFT for a CFT

Conformal dimensions

We know the energy of the ground state.
The leading quantum effect is the Casimir energy of the conformal Goldstone.

EG =
1

2
√
2
ζ(–1

2
|S2) = –0.0937…

This is the unique contribution of orderQ0 .

Final result: the conformal dimension of the lowest operator of chargeQ in theO(2)
model has the form

ΔQ =
c3/2
2
√
π
Q3/2 + 2

√
πc1/2Q

1/2 – 0.094 +O(Q–1/2)
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An EFT for a CFT

What happened?

We started from a CFT.
There is no mass gap, there are no particles, there is no Lagrangian.

We picked a sector.

In this sector the physics is described by a semiclassical configuration plus massless
fluctuations.

The full theory has no small parameters but we can study this sector with a simple EFT.
We are in a strongly coupled regime but we can compute physical observables using
perturbation theory.

would you like to know more?
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Large N vs. Large Charge
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Large N vs. Large Charge

The model

φ4 model on R × Σ for N complex fields

Sθ[φi] =
N

∑
i=1
∫dtdΣ [gμν(∂μφi)*(∂νφi) + rφ*i φi +

u

2(φ*i φi)2]
It flows to the WF in the IR limit u → ∞ when r is fine-tuned to R/8.
We compute the partition function at fixed charge

Z(Q1 ,…,QN) = Tr[e–βH N

∏
i=1

δ(Q̂i – Qi)]
where

Q̂i = ∫dΣ j0i = i∫dΣ [φ̇*i φi –φ
*
i φ̇i].

Dimensions of operators of fixed chargeQ on R3 (state/operator):

Δ(Q) = –
1

β
logZ

S2
(Q).
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Large N vs. Large Charge

Fix the charge

Explicitly

Z = ∫
π

–π

N

∏
i=1

dθi
2π

N

∏
i=1

eiθiQi Tr[e–βH N

∏
i=1

e–iθiQ̂i].
Since Q̂ depends on the momenta, the integration is not trivial but well understood.

ZΣ(Q) = ∫
π

–π

dθ

2π
e–iθQ ∫

φ(2πβ)=eiθφ(0)

Dφi e
–S[φ]

= ∫
π

–π

dθ

2π
e–iθQ ∫

φ(2πβ)=φ(0)

Dφi e
–Sθ[φ]
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Large N vs. Large Charge

Fix the charge

Explicitly

Z = ∫
π

–π

N

∏
i=1

dθi
2π

N

∏
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∏
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ZΣ(Q) = ∫
π

–π

dθ
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e–iθQ ∫

φ(2πβ)=eiθφ(0)

Dφi e
–S[φ]

= ∫
π

–π

dθ

2π
e–iθQ ∫

φ(2πβ)=φ(0)

Dφi e
–Sθ[φ]

boundary condition

Domenico Orlando Vector models at large charge (and a bit of supersymmetry)



Large N vs. Large Charge

Fix the charge

Explicitly

Z = ∫
π

–π

N

∏
i=1

dθi
2π

N

∏
i=1

eiθiQi Tr[e–βH N

∏
i=1

e–iθiQ̂i].
Since Q̂ depends on the momenta, the integration is not trivial but well understood.

ZΣ(Q) = ∫
π

–π

dθ

2π
e–iθQ ∫

φ(2πβ)=eiθφ(0)

Dφi e
–S[φ]

= ∫
π

–π

dθ

2π
e–iθQ ∫

φ(2πβ)=φ(0)

Dφi e
–Sθ[φ]

covariant derivative
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Large N vs. Large Charge

Effective actions

The covariant derivative approach:

Sθ[φ] =
N

∑
i=1
∫dtdΣ ((Dμφi)*(Dμφi) +

R

8
φ*i φi + 2u(φ*i φi)2)

where

{D0φ = ∂0φ + i
θ

β
φ

Diφ = ∂iφ

Stratonovich transformation: introduce Lagrange multiplier λ and rewrite the action as

SQ =
N

∑
i=1

[–iθiQi + ∫dtdΣ [(Di
μφi)*(Di

μφi) + (R8 + λ)φ*i φi]]
Expand around the VEV

φi =
1
√
2
Ai + ui , λ = (μ2 – R8) + λ̂
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Large N vs. Large Charge

Saddle point equations

The integral over the φ is Gaussian.
We can perform it, e.g. in terms of zeta functions.

ζ(s|Σ, μ) = Tr((
∆2
Σ – μ

2)–s)

With some massaging, we find the final equations

{FΣ (Q) = μQ +Nζ(–1
2
|Σ, μ) = μQ –ω(μ),

μζ(1
2
|Σ, μ) = –

Q

N
.

The control parameter is actuallyQ/N.
The free energy F(q) is the Legendre transform of the grand potential ω(μ).
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Large N vs. Large Charge

LargeQ/N

If Q/N � 1 we can use Weyl’s asymptotic expansion.

Tr(eΔΣ t) = ∞

∑
n=0

Kn t
n/2–1 .

The zeta function is written in terms of the geometry of Σ (heat kernel coefficients)

μΣ =

√
4π

V ( Q

2N)1/2 + R

24

√
V

4π( Q

2N)–1/2 +…
FΣ
2N

=
2

3

√
4π

V ( Q

2N)3/2 + R

12

√
V

4π( Q

2N)1/2 +…
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Large N vs. Large Charge

Order N

F
S2

(Q) = 4N

3 ( Q

2N)3/2 + N

3 ( Q

2N)1/2
–
7N

360( Q

2N)–1/2 – 71N

90720( Q

2N)–3/2 +O(e–√Q/(2N))
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Large N vs. Large Charge

Order N

F
S2

(Q) = 4N

3 ( Q

2N)3/2 + N

3 ( Q

2N)1/2
–
7N

360( Q

2N)–1/2 – 71N

90720( Q

2N)–3/2 +O(e–√Q/(2N))

leadingQ 3/2
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Large N vs. Large Charge

Order N

F
S2

(Q) = 4N

3 ( Q

2N)3/2 + N

3 ( Q

2N)1/2
–
7N

360( Q

2N)–1/2 – 71N

90720( Q

2N)–3/2 +O(e–√Q/(2N))

1/Q
expansion
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Large N vs. Large Charge

Order N

F
S2

(Q) = 4N

3 ( Q

2N)3/2 + N

3 ( Q

2N)1/2
–
7N

360( Q

2N)–1/2 – 71N

90720( Q

2N)–3/2 +O(e–√Q/(2N))

EFT
coefficients

EFT
coefficients
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Large N vs. Large Charge

Order N

F
S2

(Q) = 4N

3 ( Q

2N)3/2 + N

3 ( Q

2N)1/2
–
7N

360( Q

2N)–1/2 – 71N

90720( Q

2N)–3/2 +O(e–√Q/(2N))

asym
ptotic expansion
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Q
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Large N vs. Large Charge

Where is the universal Goldstone?
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Large N vs. Large Charge

Was it worth it?
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Large N vs. Large Charge

Final result

Δ(Q) = (4N3 +O(1))( Q

2N)3/2 + (N3 +O(1))( Q

2N)1/2 +…
– 0.0937…
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would you like to know more?
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Resurgence and the large charge

Resurgence and the large charge
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Resurgence and the large charge

Results from large N

O(2N) at criticality in 1 + 2 dimensions on R × Σ. Double-scaling limit N → ∞,Q → ∞
with q̂ = Q/(2N) fixed.

{FΣ (Q) = μQ +Nζ(–1
2
|Σ, μ),

μζ(1
2
|Σ, μ) = –

Q

N
.

ζ(s|Σ, μ) is the zeta function for the operator –4 + μ2 . In Mellin representation

ζ(s|Σ, μ) = 1

Γ(s) ∫
∞

0

dt

t
tse–μ

2 t Tr(e4t).
Large q̂ is large μ and is small t. The classical Seeley–de Witt problem:

Tr(e4t) ~ V

4πt(1 + R

12
t +…).
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Results from large N
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1

2
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Tr(e4t) ~ V

4πt(1 + R

12
t +…).
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Resurgence and the large charge
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Resurgence and the large charge

The torus

As a warm-up: Σ = T2 .

spec(4) = {–4π
2

L2
(k21 + k22)|k1 , k2 ∈ Z}.

It follows that the heat kernel trace is the square of a theta function:

Tr(e4t) = ∑
k1 ,k2∈Z

e
–
4π2

L2
(k21+k22)t

= [θ3(0,e
–
4π2 t

L2 )]2 .
We are interested in the small-t limit.
For this reason we Poisson-resum the series:

Tr(e4t) = [ L
√
4πt(1 + ∑

k∈Z
e
–
k2L2

4t )]2 = L2

4πt(1 + ∑
k∈Z2

e
–
‖k‖2L2

4t )
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Resurgence and the large charge

The torus

Grand potential

ω(μ) = –
1

2
ζ(–1

2
|T2 , μ) = L2μ3

12π (1 + ∑
k

e–‖k‖μL

‖k‖2μ2L2 (1 + 1

‖k‖μL)).
Free energy

f(q̂) = sup
μ

(μq̂ –ω(μ)) = 4
√
π

3L
q̂3/2(1 – ∑

k

e–‖k‖
√
4πq̂

8‖k‖2πq̂
+…).

• perturbative expansion in μ (here a single term) plus exponentially suppressed
terms controlled by the dimensionless parameter μL

• the free energy is written as a double expansion in the two parameters 1/q̂ and

e–
√
4πq̂ .

• non-perturbative effects more important than the “usual” instantons O(e–q̂)
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Resurgence and the large charge

The sphere

On the two sphere spec(4) = {–`(` + 1) | ` ∈ N0} with multiplicity 2` + 1.

Again, we use Poisson resummation

Tr(e4t)e–t/4 = ∑
`≥0

(2` + 1)e–(`+1/2)2 t ~
1

t

∞

∑
n=0

(–1)n+1(1 – 21–2n)
n!

B2n t
n

The series is asymptotic: the Seeley–de Witt coefficients diverge like n!:

an =
(–1)n+1(1 – 21–2n)

n!
B2n ~

2n1/2

π5/2+2n
n!.

this divergence is reflected in the existence of non-perturbative corrections.
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Resurgence and the large charge

Resurgence

The key idea is that we should think in terms of transseries

H(t) = t–b0 ∑
n≥0

a(0)
n tn + ∑

k≥1
Cke

–Ak/t t–bk ∑
n≥0

a(k)
n tn ,

The coefficients of the non-perturbative part are encoded in the large-n behavior of
the perturbative piece:

a(0)
n ~ ∑

k≥1

Ck
2πi

1

A
n/β+bk
k

(a(k)
0 Γ(βn + bk) + a(k)

1 AkΓ(βn + bk – 1) +…)
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Resurgence and the large charge

Borel resummation
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Resurgence and the large charge

Borel transform

We need to make sense of the divergent series and the imaginary terms.

H(t) = ∑
n≥0

an t
n

Ĥ(τ) = ∑
n≥0

an
Γ(βn + b)

τn

s(H)(t) = ∫
∞

0

wbe–wĤ(twβ)dw
w
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Resurgence and the large charge

Lateral transform

If there are poles on the real positive axis there is an ambiguity

C+

C–

τ

s±(H)(t) = s(H)(t) = ∫
C±

wbe–wĤ(twβ)dw
w

s+(H) – s–(H) = (2πi)∑
k

residue

We need an independent definition of the non-perturbative effects to cancel the
imaginary ambiguity.
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Resurgence and the large charge

More ingredients
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Resurgence and the large charge

Worldline interpretation

We need a non-perturbative interpretation of these exponential terms.

We read the heat kernel as the partition function of a particle at inverse temperature t

and Hamiltonian H = – ∂20 –4, i.e. a free quantum particle moving on R × Σ.

We can write the partition function as a path integral

Tr(e(∂20+4)t) = N ∫
X(1)=X(0)

DXe–S[X]

where the action is

S[X] = 1

4t ∫
1

0

dτgμν Ẋ
μ(τ)Ẋν(τ)
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Resurgence and the large charge

A transseries from geodesics

In the limit t → 0 the path integral localizes on a sum over all the closed geodesics γ.

For each geodesic a perturbative series in t, weighted by e–`(γ)2/(4t)

Tr(e(∂20+4)t) = N ∫
X(1)=X(0)

DXe–S[X]

= t–b0
∞

∑
n=0

a(0)
n tn + ∑

γ ∈ closed geodesics
e
–
`(γ)2
4t t

–bγ
∞

∑
n=0

a(γ)
n tn ,

the bγ depend on the geometry.

This is precisely the same structure predicted by resurgence.

Now we have a geometric interpretation.

Domenico Orlando Vector models at large charge (and a bit of supersymmetry)



Resurgence and the large charge

The torus

In the case of the torus, closed geodesics are labelled by two integers (k1 , k2)

The length of the geodesic is `(k1 , k2) = L

√
k21 + k22 .

The integral is quadratic and the fluctuations around each geodesic give the usual

N ∫
h(1)=h(0)=0

Dhe–
1

4t
∫10 dτ(ḣ

1)2+(ḣ2)2
= N det( 14t ∂2τ )

–1
=

1

4πt
.
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Resurgence and the large charge

The torus

Now we can write the result of the path integral

Tr(e4t) = N ∫
X(1)=X(0)

DXe–S[X] = NL2 ∑
Xcl

∫
h(1)=h(0)=0

e–S[Xcl]–S[h]

= NL2 ∑
k∈Z2

e
–
L2(k21+k

2
2)

4t ∫
h(1)=h(0)=0

Dhe–S[h] ,

=
L2

4πt[1 + ∑
k∈Z2

e
–
L2‖k‖2

4t ]
This is exactly what we had found before just by looking at the spectrum.
Now we can understand the non-perturbative effects in terms of closed geodesics.

Domenico Orlando Vector models at large charge (and a bit of supersymmetry)



Resurgence and the large charge

The sphere

Closed geodesics on the sphere go around the equator k times

We need to sum over the fluctuations hφ and hθ

There is a zero mode because we can rotate the equator

And an instability because we can slide off
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Resurgence and the large charge

The sphere path integral

The hφ fluctuation is massless and gives

∫Dhφ exp[– 14t ∫ 1

0

dτ ḣ
2
φ] = 1

(4πt)1/2

For hθ we need to work a bit more. Decompose in modes:

hθ =
√
2 sin(πnτ) λn =

π2

2 (n2 – 4k2)
• a zero mode for n = 2k

• 2k – 1 unstable modes

Once we regularize the determinant we get

∫Dhθ exp[– 14t ∫ 1

0

dτ (ḣ2θ – (2πk)2h2θ)] = ±i π

2
√
2

k

t
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Resurgence and the large charge

Back to resurgence

The one-loop result perfectly cancels the imaginary ambiguity of the Borel sum!

Tr(e(4–
1

4
)t) = s±(H)(t) ∓ 2i(πt )3/2 ∑

k≥1
(–1)kke–

k2π2

t = Re[s±(H)(t)]

And from here we can write the exact expression for the grand potential

(m2 = μ2 + 1/4):

ω(μ) = Re[2rm2

π ∫
∞

0

dy
K2(2mry)
y sin(y) ] = r2

3
m3 –

m

24
+ · · · – 2ir

1/2m3/2

(4π)3/2
e–2πrm +…

As a numerical test, we can compare with the convergent small-charge expansion
(q̂ ≈ 0.6)

rω(mr = 0.4)
∣∣∣∣
small charge

= 0.01277729663…

rω(mr = 0.4)
∣∣∣∣
resurgence

= 0.01277729769…
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Resurgence and the large charge

Optimal truncation
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Resurgence and the large charge

Lessons from large N

Let’s go back to the EFT.

The effective action is identified with the asymptotic expansion: the expression we
found for the grand potential is the value of the action at the minimum χ = μt:

ω(μ) = LEFT

∣∣∣∣
χ=μt

where

LEFT = ω0(∂μχ ∂μχ)3/2 + ω1(∂μχ ∂μχ)1/2 +…,

In general the coefficients are unknown

BUT

Now we have a geometric understanding of the non-perturbative effects
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Resurgence and the large charge

Lessons from large N

Assume:

1. the large-charge expansion is asymptotic;

2. the leading pole in the Borel plane is a particle of mass μ going around the
equator.

A CFT has no intrinsic scales.
The only dimensionful parameter is due to the fixed charge density.

The conformal dimension is a transseries

Δ(Q) = Q3/2 ∑
n≥0

f (0)
n

1

Qn + C1Q
b1 e–3πκf

(0)
0

√
Q ∑

n≥0
f (1)
n

1

Qn/2
+…

(we used μ = 3f (0)
0

√
Q/2 +….)
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Resurgence and the large charge

Lessons from large N

• The controlling parameter for the non-perturbative effects e–3πκf0
√
Q is fixed by

the leading term in the 1/Q expansion.

• The non-perturbative coefficient e–3πκf
(0)
0

√
Q fixes the large-n behavior of the

perturbative series f (0)
n .

f (0)
n ~ (2n)!(3πκf (0)

0 )–n

We don’t know enough for a Borel resummation, but we can estimate an optimal

trucation (the value of n where f(0)
n Q–n is minimal)

N* ≈
3πκf (0)

0

2
Q1/2

corresponding to an error of order ε(Q) = O(e–√Q)
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Resurgence and the large charge

Can we understand the lattice results now?

InO(2), f00 ≈ 0.301(3), so N* = O(√Q) and ε(Q) = O(e–√Q).

 0

 2

 4

 6

 8

 10

 12

 14

 2  4  6  8  10

D
(Q

)

Q

MC data
fit 

This fit was obtaind with N = 3 terms.
ForQ = 1 we get an error ≈ 6 × 10–2 and forQ = 11 the error is ≈ 5 × 10–5

(Compared to e–π ≈ 4 × 10–2 and e–π
√
11 = 3 × 10–5 ).
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Resurgence and the large charge

What has happened?

• The large-charge expansion of the Wilson–Fisher point is asymptotic

• In the double-scaling limitQ → ∞,N → ∞ we control the perturbative expansion

• We can Borel-resum the expansion

• We have a geometric interpretation for the non-perturbative effects

• We can use this geometric interpretation also in the finite-N case

• We obtain an optimal truncation and estimate of the error

• The results are consistent with lattice simulations
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Large charge and supersymmetry

Large charge and supersymmetry
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Large charge and supersymmetry

And Now for Something Completely Different

TheO(2) model has a isolated vacuum.
What happens when there is a flat direction?

Many known examples of (non-Lagrangian) N ≥ 2 SCFT in four dimensions.

Coulomb branch with a dimension-one moduli space: all the physics is encoded in a
single operator O and every chiral operator is just On .

We will write an effective action for a canonically-normalized dimension-one vector
multiplet Φ.
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Large charge and supersymmetry

Effective action

We have a single vector multiplet. The kinetic term is just

Lk = ∫d4θΦ2 + c.c. = |∂φ|2 + fermions + gauge fields

There will also be a WZ term for the Weyl symmetry and U(1) charge.
Because of N = 2, everything else is a D-term and does not contribute to protected
quantities.

LEFT = LK + αLWZ

The coefficient α fixes the a-anomaly of the EFT. It has to match the anomaly in the UV.

Claim: at large R-charge this action is all you need for any N = 2 theory (with
one-dimensional moduli space).

from
anom

aly

Domenico Orlando Vector models at large charge (and a bit of supersymmetry)



Large charge and supersymmetry

Effective action

We have a single vector multiplet. The kinetic term is just

Lk = ∫d4θΦ2 + c.c. = |∂φ|2 + fermions + gauge fields

There will also be a WZ term for the Weyl symmetry and U(1) charge.

Because of N = 2, everything else is a D-term and does not contribute to protected
quantities.

LEFT = LK + αLWZ

The coefficient α fixes the a-anomaly of the EFT. It has to match the anomaly in the UV.

Claim: at large R-charge this action is all you need for any N = 2 theory (with
one-dimensional moduli space).

from
anom

aly

Domenico Orlando Vector models at large charge (and a bit of supersymmetry)



Large charge and supersymmetry

Effective action

We have a single vector multiplet. The kinetic term is just

Lk = ∫d4θΦ2 + c.c. = |∂φ|2 + fermions + gauge fields

There will also be a WZ term for the Weyl symmetry and U(1) charge.
Because of N = 2, everything else is a D-term and does not contribute to protected
quantities.

LEFT = LK + αLWZ

The coefficient α fixes the a-anomaly of the EFT. It has to match the anomaly in the UV.

Claim: at large R-charge this action is all you need for any N = 2 theory (with
one-dimensional moduli space).

from
anom

aly

Domenico Orlando Vector models at large charge (and a bit of supersymmetry)



Large charge and supersymmetry

Effective action

We have a single vector multiplet. The kinetic term is just

Lk = ∫d4θΦ2 + c.c. = |∂φ|2 + fermions + gauge fields

There will also be a WZ term for the Weyl symmetry and U(1) charge.
Because of N = 2, everything else is a D-term and does not contribute to protected
quantities.

LEFT = LK + αLWZ

The coefficient α fixes the a-anomaly of the EFT. It has to match the anomaly in the UV.

Claim: at large R-charge this action is all you need for any N = 2 theory (with
one-dimensional moduli space).

from
anom

aly

Domenico Orlando Vector models at large charge (and a bit of supersymmetry)



Large charge and supersymmetry

Observables

Three-point function of the Coulomb branch operators〈
On1 (x1)On2 (x2)Ōn1+n2 (x3)

〉
=

Cn1 ,n2 ,n1+n2

|x1 – x3 |2n1Δ |x2 – x3 |2n2Δ

The OPE of O with itself is regular, so we can set x2 = x1 and the three-point function is
actually a two-point function.

Cn ,n–n ,n = |x1 – x2 |
2nΔ

〈
On(x1)Ōn(x2)

〉
= eqn–q0 = G2n

Q = nΔ is the controlling parameter (it’s the R-charge)
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Large charge and supersymmetry

Two-point function

〈
Φn(x1)Φ̄n(x2)

〉
= ∫Dφφn(x1)φ̄n(x2)e–Sk

We can just pull the sources in the action and minimize

Sk + Ssources ∝ k0 + ∫d4x [ ∂μφ∂μφ̄ – Q logφδ(x – x1) – Q log φ̄δ(x – x2)]
At the minimum:

qn = k1Q + k0 +Q log(Q) + (α + 1

2) log(Q) +O(Q0)
Corrections from quantum fluctuations in the path integral as a series in 1/Q.
No other tree-level terms.
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Large charge and supersymmetry

Two-point function: quantum corrections

1/Q is the loop-counting parameter because we are expanding around a VEV that
depends onQ.
Sum of a ground state piece and a series in 1/Q.

qn = k0 + k1Q +Q log(Q) + (α + 1

2) log(Q) +
∞

∑
m=1

km(α)
Qm

The interaction comes from the WZ term and can only depend on α.

Compute order-by-order

k

+

k

+

k

+

k

+

k

k1(α) = 1

2(α2 + α + 16)
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Large charge and supersymmetry

Integrability to the rescue

There is a better way.
Using localization one finds that the qn satisfy arXiv:0910.4963

∂τ∂τ̄qn = eqn+1–qn – eqn–qn–1

We have a Toda chain: an integrable system!
But there is a big difference between integrable and integrated.
Unless…

…we use the form that follows from the existence of the asymptotic expansion

qn(τ, τ̄) = B(τ, τ̄) + nA(τ, τ̄) + nΔ log(nΔ) + (α + 1

2) log(nΔ) +
∞

∑
m=1

km(α)
nm
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∂τ∂τ̄qn = eqn+1–qn – eqn–qn–1

We have a Toda chain: an integrable system!
But there is a big difference between integrable and integrated.
Unless…

…we use the form that follows from the existence of the asymptotic expansion

qn(τ, τ̄) = B(τ, τ̄) + nA(τ, τ̄) + nΔ log(nΔ) + (α + 1

2) log(nΔ) +
∞

∑
m=1

km(α)
nm

no τ
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Large charge and supersymmetry

Toda lattice + large charge

The Toda-lattice equation turns into a pair of coupled Liouville-like equations for A
and B and a difference equation for the τ-independent part.

We can actually solve the recursion relation, using the value of k1(α) found at one
loop.

qn = B(τ, τ̄) + nA(τ, τ̄) + log(Γ(nΔ + α + 1))
The log term is universal, only depends on α.

We have completely resummed the 1/Q expansion.
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Large charge and supersymmetry

Recursion relation

In terms of the generator O of the Coulomb branch we have:

〈
On(x1)Ōn(x2)

〉
= Cn(τ, τ̄)Γ(nΔ + α + 1)

|x1 – x2 |2nΔ

The coefficient Cn depends on the normalization of O(x).

Crucial: This form is valid for any N = 2 SCFT with dimension-one Coulomb branch.
Including non-Lagrangian theories.
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Large charge and supersymmetry

The linear term

In fact we can do better in the case of SQCD.

Cn = enA+B +O(e–κ√n),
and the Toda-lattice equation reduces to the Liouville equation for A:

∂∂̄A = 8eA .

The general solution depends on two arbitrary functions

eA =
∂f∂̄f̃

(1 – 4ff̃)2
.

We need one more ingredient: S-duality
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Large charge and supersymmetry

Back to Liouville

We look for the solution to the Liouville equation

∂σ∂σ̄Â(σ, σ̄) = 8eÂ(σ,σ̄) ,

where eÂ(σ,σ̄) is a modular form of weight (2, 2).

Transforming back to the τ coordinate we find

A(τ, τ̄) = log( 1

4(2 Im(τ) + 4/π log(2))2 ) +O(e2πiτ).
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Large charge and supersymmetry

Comparison with localization

How well does this work?
For the special case of SU(2) SQCD with Nf = 4 we can compare with localization.
arXiv:1602.05971

0 10 20 30 40 50

-8

-6

-4

-2

0

2

4

Im τ

Δ
n
q n
(τ
)

n
1

2

5

10

20

35

Domenico Orlando Vector models at large charge (and a bit of supersymmetry)

https://arxiv.org/abs/1602.05971
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Comparison with localization
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Large charge and supersymmetry

Adding instantons

We can do better.

We have resummed the 1/Q expansion around one vacuum.
Exponential corrections coming from the next saddle in the path integral.
BPS particles going around the equator of the three-sphere.
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Large charge and supersymmetry

Comparison with localization
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Large charge and supersymmetry

Comparison with localization
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Large charge and supersymmetry

Comparison with bootstrap

For strongly coupled theories one can use bootstrap to place bounds on the
three-point coefficients with n = 1.
This is the worst possible situation for us. And still…
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Large charge and supersymmetry

Comparison with boostrap

1.0 1.5 2.0 2.5 3.0
∆ϕ0

1

2

3

4
λ2
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SU(N)
MFT

Taken from arXiv:2006.01847
would you like to know more?
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Conclusions

Conclusions

• With the large-charge approach we can study strongly-coupled systems
perturbatively.

• Select a sector and we write a controllable effective theory.

• The strongly-coupled physics is (for the most part) subsumed in a semiclassical
state.

• Qual(nt)itative control of the non-pertubative effects.

• Compute the CFT data.

• Very good agreement with lattice (supersymmetry, large N).

• Precise and testable predictions.
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