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Introduction

Who’s who

L. Álvarez Gaumé (SCGP and CERN);
D. Banerjee (Calcutta);
S. Chandrasekharan (Duke);
S. Hellerman (IPMU);
S. Reffert, N. Dondi, I. Kalogerakis , V. Pellizzani (AEC Bern);
F. Sannino (CP3-Origins and Napoli);
M. Watanabe (Weizmann).
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Introduction

Why are we here? Conformal field theories

extrema of the RG flow critical phenomena
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Introduction

Why are we here? Conformal field theories are hard

Most conformal field theories (CFTs) lack nice limits where
they become simple and solvable.

No parameter of the theory can be dialed to a
simplifying limit.
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Introduction

Why are we here? Conformal field theories are hard

In presence of a symmetry there can be sectors of the theory where
anomalous dimension and OPE coefficients simplify.
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Introduction

The idea

Study subsectors of the theory with fixed quantum number Q.

In each sector, a large Q is the controlling parameter
in a perturbative expansion.
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Introduction

no bootstrap here!

This approach is orthogonal to bootstrap.
We will use an effective action.
We will access sectors that are difficult to
reach with bootstrap.
(However, arXiv:1710.11161).
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Introduction

Concrete results

We consider the O(N) vector model in three dimensions. In the IR it flows to a
conformal fixed point [Wilson & Fisher].

We find an explicit formula for the dimension of the lowest primary at fixed charge:

ΔQ =
c3/2

2
√
π
Q3/2 + 2

√
πc1/2Q1/2 − 0.094+O

(
Q−1/2

)
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Introduction

Summary of the results: O(2)
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Introduction

Scales

We want to write a Wilsonian effective action.

Choose a cutoff Λ, separate the fields into high and low
frequency φH,φL and do the path integral over the
high-frequency part:

eiSΛ(φL)=
∫

DφH eiS(φH,φL)
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Introduction

Scales

We want to write a Wilsonian effective action.

Choose a cutoff Λ, separate the fields into high and low
frequency φH,φL and do the path integral over the
high-frequency part:

eiSΛ(φL)=
∫

DφH eiS(φH,φL)too
hard
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Introduction

Scales

• We look at a finite box of typical length R
• The U(1) charge Q fixes a second scale ρ1/2 ∼ Q1/2/R

1
R
≪ Λ≪ ρ1/2 ∼ Q1/2

R
≪ ΛUV

For Λ≪ ρ1/2 the effective action is weakly coupled and under perturbative control in
powers of ρ−1.
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Introduction

Too good to be true?
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Introduction

Too good to be true?

Think of Regge trajectories.
The prediction of the theory is

m2 ∝ J
(
1+O

(
J−1
))

but experimentally everything works so
well at small J that String Theory was
invented.

FIG. 2. The (n, M2)-trajectories for the states a0(10++), a2(12++) and a4(14++) with a) µ2 = 1.38 GeV2 and b) µ2 = 1.10
GeV2; Two variants for the f2(02

++)-trajectories with the slope parameter c) µ2 = 1.38 GeV2 and d) µ2 = 1.10 GeV2. The
f0(00

++)-trajectories for e) real resonance states and f) K-matrix pole states. As in Fig. 1, the open circles stand for states
predicted by the present classification.

5
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Introduction

Too good to be true?

The unreasonable effectiveness

of the large charge expansion.
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Introduction

Selected topics in the LQNE

• O(2) model [S.Hellerman, DO, S.Reffert, M.Watanabe] [A.Monin, D.Pirtskhalava, R.Rattazzi, F.K.

Seibold]

• O(N) model [L.Álvarez-Gaumé, O.Loukas, DO, S.Reffert]

• gravitational systems [O.Loukas, DO, S.Reffert, D. Sarkar], [de la Fuente], [S.-F. Guo, H-S Liu,

H.Lu, Y.Pang]

• large N [L.Álvarez-Gaumé, DO, S.Reffert], [S.Giombi, J.Hyman]

• ε double-scaling [G.Badel, G.Cuomo, A.Monin, R.Rattazzi], [G.Arias-Tamargo,

D.Rodriguez-Gomez, J.G. Russo] [O.Antipin, J.Bersini, F.Sannino, Z.-W.Wang, C.Zhang] [I.Jack,

T.Jones]

• non-relativistic CFTs [S.Kravec, S.Pal], [S.Hellerman, I.Swanson], [S.Favrod, DO, S.Reffert], [DO,

S.Reffert, V.Pellizzani]

• N = 2 [S.Hellerman, S.Maeda], [S.Hellerman, S.Maeda, DO, S.Reffert, M.Watanabe], [A.Bourget,
D.Rodriguez-Gomez, J.G.Russo], [A.Grassi, Z.Komargodski, L.Tizzano]

• bootstrap [D.Jafferis, A.Zhiboedov]
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Introduction

Today’s talk

The EFT for the O(2) model in 2+ 1 dimensions

Justify and prove all my claims from first principles

Use resurgence to reach small charge
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Introduction

Today’s talk

The EFT for the O(2) model in 2+ 1 dimensions

• An effective field theory (EFT) for a CFT.
• The physics at the saddle.
• State/operator correspondence for anomalous dimensions.

Justify and prove all my claims from first principles

Use resurgence to reach small charge
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Introduction

Today’s talk

The EFT for the O(2) model in 2+ 1 dimensions

Justify and prove all my claims from first principles

• well-defined asymptotic expansion (in the technical sense)
• justify why the expansion works at small charge
• compute the coefficients in the effective action in large-N

Use resurgence to reach small charge
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Introduction

Today’s talk

The EFT for the O(2) model in 2+ 1 dimensions

Justify and prove all my claims from first principles

Use resurgence to reach small charge

• Borel resum the double-scaling Q → ∞, N → ∞ limit
• geometric interpretation of non-perturbative effects
• general structure of the corrections in the EFT
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An EFT for a CFT

An EFT for a CFT
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An EFT for a CFT

The O(2) model

The simplest example is the Wilson–Fisher (WF) point of the O(2) model in three
dimensions.
• Non-trivial fixed point of the φ4 action

LUV = ∂μφ∗ ∂μφ− u(φ∗φ)2

• Strongly coupled
• In nature: 4He.
• Simplest example of spontaneous symmetry breaking.
• Not accessible in perturbation theory. Not accessible in 4−ε. Not accessible in

large N.
• Lattice. Bootstrap.
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An EFT for a CFT

Charge fixing

We assume that the O(2) symmetry is not accidental.

We consider a subsector of fixed charge Q.
Generically, the classical solution at fixed charge breaks spontaneously U(1) → ∅.

We have one Goldstone boson χ.
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An EFT for a CFT

An action for χ

Start with two derivatives:

L[χ] =
fπ
2

∂μχ ∂μχ−C3

(χ is a Goldstone so it is dimensionless.)

We want to describe a CFT: we can dress with a dilaton

L[σ,χ] =
fπe−2fσ

2
∂μχ ∂μχ− e−6fσC3 +

e−2fσ

2

(
∂μσ ∂μσ− ξR

f2

)
The fluctuations of χ give the Goldstone for the broken U(1), the fluctuations of σ give
the (massive) Goldstone for the broken conformal invariance.

Domenico Orlando The O(N) vector model at large charge
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An EFT for a CFT

Linear sigma model

We can put together the two fields as

Σ = σ+ ifπχ

and rewrite the action in terms of a complex scalar

ϕ =
1√
2f
e−fΣ

We get

L[ϕ] = ∂μϕ∗ ∂μϕ−ξRϕ∗ϕ− u(ϕ∗ϕ)3

Only depends on dimensionless quantities b = f 2fπ and u = 3(Cf 2)3.
Scale invariance is manifest.
The field ϕ is some complicated function of the original φ.
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An EFT for a CFT

Centrifugal barrier

The O(2) symmetry acts as a shift on χ.
Fixing the charge is the same as adding a centrifugal term ∝ 1

|ϕ|2
.

|φ 2

V

original |ϕ| 6

centrifugal
barrier

newvacuum
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An EFT for a CFT

Ground state

We can find a fixed-charge solution of the type

χ(t, x) = μt σ(t, x) =
1
f

log(v) = const.,

where

μ ∝ Q1/2 + . . . v ∝
1

Q1/2

The classical energy is

E = c3/2VQ3/2 + c1/2RVQ1/2 +O
(
Q−1/2

)

Domenico Orlando The O(N) vector model at large charge
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An EFT for a CFT

Fluctuations

The fluctuations over this ground state are described by two modes.
• A universal “conformal Goldstone”. It comes from the breaking of the U(1).

ω =
1√
2
p

• The massive dilaton. It controls the magnitude of the quantum fluctuations. All
quantum effects are controled by 1/Q.

ω = 2μ+
p2

2μ

(This is a heavy fluctuation around the semiclassical state. It has nothing to do with a
light dilaton in the full theory)
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An EFT for a CFT

Non-linear sigma model

Since σ is heavy we can integrate it out and write a non-linear sigma model (NLSM) for
χ alone.

L[χ] = k3/2(∂μχ ∂μχ)3/2 + k1/2R(∂μχ ∂μχ)1/2 + . . .

These are the leading terms in the expansion around the classical solution χ = μt.
All other terms are suppressed by powers of 1/Q.
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An EFT for a CFT

State-operator correspondence

The anomalous dimension on Rd is the energy in the cylinder frame.

ΔSd−1

Rd

H

R × Sd−1

Sd−1

Protected by conformal invariance: a well-defined quantity.
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An EFT for a CFT

Conformal dimensions

We know the energy of the ground state.
The leading quantum effect is the Casimir energy of the conformal Goldstone.

EG =
1

2
√
2
ζ(− 1

2 |S
2) = −0.0937 . . .

This is the unique contribution of order Q0.

Final result: the conformal dimension of the lowest operator of charge Q in the O(2)
model has the form

ΔQ =
c3/2

2
√
π
Q3/2 + 2

√
πc1/2Q1/2 − 0.094+O

(
Q−1/2

)
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An EFT for a CFT

What happened?

We started from a CFT.
There is no mass gap, there are no particles, there is no Lagrangian.

We picked a sector.

In this sector the physics is described by a semiclassical configuration plus massless
fluctuations.

The full theory has no small parameters but we can study this sector with a simple EFT.
We are in a strongly coupled regime but we can compute physical observables using
perturbation theory.

would you like to know more?

Domenico Orlando The O(N) vector model at large charge
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Large N vs. Large Charge

Large N vs. Large Charge
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Large N vs. Large Charge

The model

φ4 model on R ×Σ for N complex fields

Sθ[ϕi] =
N

∑
i=1

∫
dtdΣ

[
gμν(∂μϕi)

∗(∂νϕi) + rϕ∗
i ϕi +

u
2
(ϕ∗

i ϕi)
2
]

It flows to the WF in the IR limit u → ∞ when r is fine-tuned to R/8.
We compute the partition function at fixed charge

Z(Q1, . . . ,QN) = Tr

[
e−βH

N

∏
i=1
δ(Q̂i −Qi)

]
where

Q̂i =
∫

dΣ j0i = i
∫

dΣ [ϕ̇∗
i ϕi −ϕ∗

i ϕ̇i].

Dimensions of operators of fixed charge Q on R3 (state/operator):

Δ(Q) = − 1
β

logZS2(Q).

Domenico Orlando The O(N) vector model at large charge
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Large N vs. Large Charge

Fix the charge

Explicitly

Z =
∫ π
−π

N

∏
i=1

dθi

2π

N

∏
i=1

eiθiQi Tr

[
e−βH

N

∏
i=1

e−iθiQ̂i

]
.

Since Q̂ depends on the momenta, the integration is not trivial but well understood.

ZΣ(Q) =
∫ π
−π

dθ
2π

e−iθQ
∫

ϕ(2πβ)=eiθϕ(0)

Dϕi e−S[ϕ]

=
∫ π
−π

dθ
2π

e−iθQ
∫

ϕ(2πβ)=ϕ(0)

Dϕi e−S
θ[ϕ]

Domenico Orlando The O(N) vector model at large charge
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Large N vs. Large Charge

Fix the charge

Explicitly

Z =
∫ π
−π

N

∏
i=1

dθi

2π

N

∏
i=1

eiθiQi Tr

[
e−βH

N

∏
i=1

e−iθiQ̂i

]
.

Since Q̂ depends on the momenta, the integration is not trivial but well understood.

ZΣ(Q) =
∫ π
−π

dθ
2π

e−iθQ
∫

ϕ(2πβ)=eiθϕ(0)

Dϕi e−S[ϕ]

=
∫ π
−π

dθ
2π

e−iθQ
∫

ϕ(2πβ)=ϕ(0)

Dϕi e−S
θ[ϕ]

boundarycondition
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Large N vs. Large Charge

Fix the charge

Explicitly

Z =
∫ π
−π

N

∏
i=1

dθi

2π

N

∏
i=1

eiθiQi Tr

[
e−βH

N

∏
i=1

e−iθiQ̂i

]
.

Since Q̂ depends on the momenta, the integration is not trivial but well understood.

ZΣ(Q) =
∫ π
−π

dθ
2π

e−iθQ
∫

ϕ(2πβ)=eiθϕ(0)

Dϕi e−S[ϕ]

=
∫ π
−π

dθ
2π

e−iθQ
∫

ϕ(2πβ)=ϕ(0)

Dϕi e−S
θ[ϕ]

covariant derivative
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Large N vs. Large Charge

Effective actions

The covariant derivative approach:

Sθ[ϕ] =
N

∑
i=1

∫
dtdΣ

(
(Dμϕi)

∗(Dμϕi) +
R
8
ϕ∗
i ϕi + 2u(ϕ∗

i ϕi)
2
)

where{
D0ϕ = ∂0ϕ+ iθβϕ
Diϕ = ∂iϕ

Stratonovich transformation: introduce Lagrange multiplier λ and rewrite the action as

SQ =
N

∑
i=1

[
−iθiQi +

∫
dtdΣ

[(
Di
μϕi

)∗(
Di
μϕi

)
+

(
R
8
+λ

)
ϕ∗
i ϕi

]]
Expand around the VEV

ϕi =
1√
2
Ai + ui, λ =

(
μ2 − R

8

)
+ λ̂
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Large N vs. Large Charge

Saddle point equations

The integral over the ϕ is Gaussian.
We can perform it, e.g. in terms of zeta functions.

ζ(s|Σ,μ) = Tr
(
(∇2

Σ −μ2)−s
)

With some massaging, we find the final equations{
FΣ (Q) = μQ+Nζ(− 1

2 |Σ,μ),
μζ( 12 |Σ,μ) = −Q

N .

The control parameter is actually Q/N.
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Large N vs. Large Charge

Large Q/N

If Q/N ≫ 1 we can use Weyl’s asymptotic expansion.

Tr
(
eΔΣt

)
=

∞

∑
n=0

Kntn/2−1.

The zeta function is written in terms of the geometry of Σ (heat kernel coefficients)

μΣ =

√
4π
V

(
Q
2N

)1/2

+
R
24

√
V
4π

(
Q
2N

)−1/2

+ . . .

FΣ
2N

=
2
3

√
4π
V

(
Q
2N

)3/2

+
R
12

√
V
4π

(
Q
2N

)1/2

+ . . .
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Large N vs. Large Charge

Order N

FS2(Q) =
4N
3

(
Q
2N

)3/2

+
N
3

(
Q
2N

)1/2

− 7N
360

(
Q
2N

)−1/2

− 71N
90720

(
Q
2N

)−3/2

+O
(
e−

√
Q/(2N)

)
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Large N vs. Large Charge

Order N

FS2(Q) =
4N
3

(
Q
2N

)3/2

+
N
3

(
Q
2N

)1/2

− 7N
360

(
Q
2N

)−1/2

− 71N
90720

(
Q
2N

)−3/2

+O
(
e−

√
Q/(2N)

)

leadingQ 3/2
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Large N vs. Large Charge

Order N

FS2(Q) =
4N
3

(
Q
2N

)3/2

+
N
3

(
Q
2N

)1/2

− 7N
360

(
Q
2N

)−1/2

− 71N
90720

(
Q
2N

)−3/2

+O
(
e−

√
Q/(2N)

)

1/Q
expansion
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Large N vs. Large Charge

Order N

FS2(Q) =
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Q
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N
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Q
2N
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360

(
Q
2N

)−1/2
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90720

(
Q
2N
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(
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√
Q/(2N)
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EFTcoefficients

EFTcoefficients
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Large N vs. Large Charge

Order N
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Large N vs. Large Charge

Where is the universal Goldstone?
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Large N vs. Large Charge

Was it worth it?

Domenico Orlando The O(N) vector model at large charge
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Large N vs. Large Charge

Final result

Δ(Q) =

(
4N
3

+O(1)
)(

Q
2N

)3/2

+

(
N
3
+O(1)

)(
Q
2N

)1/2

+ . . .

− 0.0937 . . .
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2

would you like to know more?
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Large N vs. Large Charge
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Resurgence and the large charge

Resurgence and the large charge

Domenico Orlando The O(N) vector model at large charge



41

Resurgence and the large charge

Results from large N

O(2N) at criticality in 1+ 2 dimensions on R ×Σ. Double-scaling limit N → ∞, Q → ∞
with q̂ = Q/(2N) fixed.

{
FΣ (Q) = μQ+Nζ(− 1

2 |Σ,μ),
μζ( 12 |Σ,μ) = −Q

N .

ζ(s|Σ,μ) is the zeta function for the operator −△+μ2. In Mellin representation

ζ(s|Σ,μ) =
1
Γ(s)

∫ ∞

0

dt
t
tse−μ

2t Tr
(
e△t
)

.

Large q̂ is large μ and is small t. The classical Seeley–de Witt problem:

Tr
(
e△t
)
∼ V

4πt

(
1+

R
12
t+ . . .

)
.

Domenico Orlando The O(N) vector model at large charge
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Resurgence and the large charge

Results from large N

O(2N) at criticality in 1+ 2 dimensions on R ×Σ. Double-scaling limit N → ∞, Q → ∞
with q̂ = Q/(2N) fixed.
The free energy per DOF f(q̂) = F/(2N) is

f(q̂) = sup
μ

(μq̂−ω(μ)), q̂ =
dω(μ)

dμ
, ω(μ) = −1

2
ζ(− 1

2 |Σ,μ),

ζ(s|Σ,μ) is the zeta function for the operator −△+μ2. In Mellin representation

ζ(s|Σ,μ) =
1
Γ(s)

∫ ∞

0

dt
t
tse−μ

2t Tr
(
e△t
)

.

Large q̂ is large μ and is small t. The classical Seeley–de Witt problem:

Tr
(
e△t
)
∼ V

4πt

(
1+

R
12
t+ . . .

)
.
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Resurgence and the large charge

The torus

As a warm-up: Σ = T2.

spec(△) = {−4π2

L2

(
k21 + k22

)
|k1, k2 ∈ Z}.

It follows that the heat kernel trace is the square of a theta function:

Tr
(
e△t
)
= ∑

k1,k2∈Z

e−
4π2

L2
(k21+k

2
2)t =

[
θ3(0,e−

4π2t
L2 )

]2
.

We are interested in the small-t limit.
For this reason we Poisson-resum the series:

∑
n∈Z

h(n) = ∑
k∈Z

∫
R
h(ρ)e2πikρ dρ

Tr
(
e△t
)
=

[
L√
4πt

(
1+ ∑′

k∈Z

e−
k2L2
4t

)]2
=

L2

4πt

(
1+ ∑′

k∈Z2

e−
∥k∥2L2

4t

)
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Resurgence and the large charge

The torus

Grand potential

ω(μ) = −1
2
ζ(− 1

2 |T
2,μ) =

L2μ3

12π

(
1+ ∑′

k

e−∥k∥μL

∥k∥2μ2L2

(
1+

1
∥k∥μL

))
.

Free energy

f(q̂) = sup
μ

(μq̂−ω(μ)) =
4
√
π

3L
q̂3/2

(
1− ∑′

k

e−∥k∥
√
4πq̂

8∥k∥2πq̂
+ . . .

)
.

• perturbative expansion in μ (here a single term) plus exponentially suppressed
terms controlled by the dimensionless parameter μL

• the free energy is written as a double expansion in the two parameters 1/q̂ and
e−

√
4πq̂.

• non-perturbative effects more important than the “usual” instantons O
(
e−q̂

)
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Resurgence and the large charge

The sphere

On the two sphere spec(△) = {−ℓ(ℓ+ 1) | ℓ ∈ N0} with multiplicity 2ℓ+ 1.

Again, we use Poisson resummation

∑
n∈Z

h(n) = ∑
k∈Z

∫
R
h(ρ)e2πikρ dρ

to rewrite the heat kernel in terms of the imaginary error function

Tr
(
e△t
)
e−t/4 = ∑

ℓ≥0
(2ℓ+ 1)e−(ℓ+1/2)2t =

r2

t
+ 2∑′

k∈Z

(−1)k
[
r2

t
− 2kπr3

t3/2 F(πrkt1/2 )

]
where

F(z) = e−z
2
∫ z

0
dt e−t

2
=

√
π
2

e−z
2
erfi(z)
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Resurgence and the large charge

Sphere: asymptotic expansion

For small t

F(z) ∼
∞

∑
n=0

(2n+ 1)!!
2n+1

(
1
z

)2n+1

and

Tr
(
e(△− 1

4 )t
)
∼ 1

t

∞

∑
n=0

(−1)n+1(1− 21−2n)

n!
B2ntn

The series is asymptotic: the Seeley–de Witt coefficients diverge like n!:

an =
(−1)n+1(1− 21−2n)

n!
B2n ∼

2n1/2

π5/2+2nn!.

this divergence is reflected in the existence of non-perturbative corrections.
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Resurgence and the large charge

Resurgence

The key idea is that we should think in terms of transseries

H(t) = t−b0 ∑
n≥0

a(0)n tn + ∑
k≥1

Cke
−Ak/tt−bk ∑

n≥0
a(k)n tn,

The coefficients of the non-perturbative part are encoded in the large-n behavior of the
perturbative piece:

a(0)n ∼ ∑
k≥1

Ck

2πi
1

An/β+bk
k

(
a(k)0 Γ(βn+ bk) + a(k)1 AkΓ(βn+ bk − 1) + . . .

)
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Resurgence and the large charge

Resurgence

In our case, the an are

an = 4
√
π

∞

∑
k=1

(−1)k
Γ(n+ 1

2 )

(πk)2n
.

Comparing the two expressions we find that for the trace of the heat kernel:

β = 1, bk =
1
2

, Ak = (πk)2,
Ck

2πi
a(k)0 = 4(−)kkπ3/2, a(k)>0 = 0.

The series around each exponential are truncated to only one term and the
non-perturbative correction to the heat kernel is

4i
(π
t

)3/2 ∞

∑
k=1

(−)kk e−(πk)2/t.

Domenico Orlando The O(N) vector model at large charge



48

Resurgence and the large charge

Borel resummation

Domenico Orlando The O(N) vector model at large charge



49

Resurgence and the large charge

Borel transform

We need to make sense of the divergent series and the imaginary terms.

H(t) = ∑
n≥0

antn Ĥ(τ) = ∑
n≥0

an
Γ(βn+ b)

τn

s(H)(t) =
∫ ∞

0
wbe−wĤ(twβ)

dw
w
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Resurgence and the large charge

Lateral transform

If there are poles on the real positive axis there is an ambiguity

C+

C−

τ

s±(H)(t) = s(H)(t) =
∫
C±
wbe−wĤ(twβ)

dw
w

s+(H)− s−(H) = (2πi)∑
k
residue

We need an independent definition of the non-perturbative effects to cancel the
imaginary ambiguity.
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Resurgence and the large charge

Borel transform for the heat kernel on S2

Tr
(
e(△−1/(4))t

)
∼ 1

t ∑
n≥0

B2n
(−1)n(1− 21−2n)

n!
tn =

1
t ∑
n≥0

antn

In the previous notation, β = 1, b = 3/2.
The Borel transform can be summed in terms of elementary functions

H(τ) =
1
τ ∑

n≥0

an
Γ(n+ 3/2)

τn =
1√

πτ sin
(√
τ
)

and if we Laplace transform [Perrin, 1928]

s(H)(t) =
2√
πt3/2

∫ ∞

0
dy y

e−y
2/t

sin(y)

there are simple poles for y = kπ, k = 1, 2, . . .. The residues are

(2πi)Res

(
2√
πt3/2 y

e−y
2/t

sin(y)
, kπ

)
= (−)k+14i|k|

(π
t

)3/2
e−

k2π2
t .
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Resurgence and the large charge

More ingredients
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Resurgence and the large charge

Worldline interpretation

We need a non-perturbative interpretation of these exponential terms.

We read the heat kernel as the partition function of a particle at inverse temperature t
and Hamiltonian H = − ∂2

0 −△, i.e. a free quantum particle moving on R ×Σ.

We can write the partition function as a path integral

Tr
(
e(∂

2
0+△)t

)
= N

∫
X(1)=X(0)

DXe−S[X]

where the action is

S[X] =
1
4t

∫ 1

0
dτgμνẊμ(τ)Ẋν(τ)
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Resurgence and the large charge

A transseries from geodesics

In the limit t → 0 the path integral localizes on a sum over all the closed geodesics γ.

For each geodesic a perturbative series in t, weighted by e−ℓ(γ)2/(4t)

Tr
(
e(∂

2
0+△)t

)
= N

∫
X(1)=X(0)

DXe−S[X]

= t−b0

∞

∑
n=0

a(0)n tn + ∑′

γ ∈ closed geodesics

e−
ℓ(γ)2

4t t−bγ
∞

∑
n=0

a(γ)
n tn,

the bγ depend on the geometry.

This is precisely the same structure predicted by resurgence.

Now we have a geometric interpretation.
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Resurgence and the large charge

The torus

In the case of the torus, closed geodesics are labelled by two integers (k1, k2)

The length of the geodesic is ℓ(k1, k2) = L
√
k21 + k22.

The integral is quadratic and the fluctuations around each geodesic give the usual

N
∫

h(1)=h(0)=0

Dhe− 1
4t

∫ 1
0 dτ(ḣ1)2+(ḣ2)2 = N det

(
1
4t

∂2
τ

)−1

=
1

4πt
.
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Resurgence and the large charge

The torus

Now we can write the result of the path integral

Tr
(
e△t
)
= N

∫
X(1)=X(0)

DXe−S[X] = N L2 ∑
Xcl

∫
h(1)=h(0)=0

e−S[Xcl]−S[h]

= N L2 ∑
k∈Z2

e−
L2(k21+k

2
2)

4t

∫
h(1)=h(0)=0

Dhe−S[h],

=
L2

4πt

[
1+ ∑′

k∈Z2

e−
L2∥k∥2

4t

]

This is exactly what we had found before just by looking at the spectrum.
Now we can understand the non-perturbative effects in terms of closed geodesics.
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Resurgence and the large charge

The sphere

Closed geodesics on the sphere go around the equator k times

There is a zero mode because we can rotate the equator

And an instability because we can slide off
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Resurgence and the large charge

The sphere path integral

At leading order we can just pick a coordinate system and expand the action

L = θ̇2
+ sin2(θ)φ̇2

around the geodesic

θ =
π
2

φ(τ) = 2πkτ

so that the fluctuations give a massless and a massive mode

Tr
(
e△t
)
= ∑

k∈Z

e−
(2πk)2

4t

∫
DhθDhφ exp

[
− 1

4t

∫ 1

0
dτ

(
ḣ2φ + ḣ2θ − (2πk)2h2θ

)]

Domenico Orlando The O(N) vector model at large charge



59

Resurgence and the large charge

The sphere path integral

The hφ fluctuation is massless and gives∫
Dhφ exp

[
− 1

4t

∫ 1

0
dτ ḣ2φ

]
=

1
(4πt)1/2

For hθ we need to work a bit more. Decompose in modes:

hθ =
√
2 sin(πnτ) λn =

π2

2

(
n2 − 4k2

)
• a zero mode for n = 2k
• 2n− 1 unstable modes

Once we regularize the determinant we get∫
Dhθ exp

[
− 1

4t

∫ 1

0
dτ

(
ḣ2θ − (2πk)2h2θ

)]
= ±i π

2
√
2

k
t

And putting it all together, the non-trivial geodesics give

±2i
(π
t

)3/2
∑′

k∈Z

|k|e−
k2π2
t
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ḣ2θ − (2πk)2h2θ

)]
= ±i π

2
√
2

k
t

And putting it all together, the non-trivial geodesics give

±2i
(π
t

)3/2
∑′

k∈Z

|k|e−
k2π2
t

Domenico Orlando The O(N) vector model at large charge



59

Resurgence and the large charge

The sphere path integral

The hφ fluctuation is massless and gives∫
Dhφ exp

[
− 1

4t

∫ 1

0
dτ ḣ2φ
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Resurgence and the large charge

Back to resurgence

The one-loop result perfectly cancels the imaginary ambiguity of the Borel sum!

Tr
(
e(△− 1

4 )t
)
= s±(H)(t)∓ 2i

(π
t

)3/2
∑
k≥1

(−1)kke−
k2π2
t = Re[s±(H)(t)]

And from here we can write the exact expression for the grand potential
(m2 = μ2 + 1/4):

ω(μ) = Re
[
2rm2

π

∫ ∞

0
dy

K2(2mry)
y sin(y)

]
=

r2

3
m3 − m

24
+ · · · − 2ir1/2m3/2

(4π)3/2 e−2πrm + . . .

As a numerical test, we can compare with the convergent small-charge expansion
(q̂ ≈ 0.6)

rω(mr = 0.4)
∣∣∣∣
small charge

= 0.012 777 296 63 . . .

rω(mr = 0.4)
∣∣∣∣
resurgence

= 0.012 777 297 69 . . .
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Resurgence and the large charge

Optimal truncation
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Resurgence and the large charge

Lessons from large N

Let’s go back to the EFT.

The effective action is identified with the asymptotic expansion: the expression we
found for the grand potential is the value of the action at the minimum χ = μt:

ω(μ) = LEFT

∣∣∣∣
χ=μt

where

LEFT = ω0(∂μχ ∂μχ)3/2 +ω1(∂μχ ∂μχ)1/2 + . . . ,

In general the coefficients are unknown

BUT

Now we have a geometric understanding of the non-perturbative effects
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Resurgence and the large charge

Lessons from large N

Assume:

1. the large-charge expansion is asymptotic;

2. the leading pole in the Borel plane is a particle of mass μ going around the
equator.

A CFT has no intrinsic scales.
The only dimensionful parameter is due to the fixed charge density.

The conformal dimension is a transseries

Δ(Q) = Q3/2 ∑
n≥0

f(0)n
1
Qn +C1Qb1e−3πκf(0)0

√
Q ∑
n≥0

f(1)n
1

Qn/2 + . . .

(we used μ = 3f(0)0

√
Q/2+ . . ..)

Domenico Orlando The O(N) vector model at large charge



64

Resurgence and the large charge

Lessons from large N

• The controlling parameter for the non-perturbative effects e−3πκf0
√
Q is fixed by

the leading term in the 1/Q expansion.

• The non-perturbative coefficient e−3πκf(0)0

√
Q fixes the large-n behavior of the

perturbative series f(0)n .

f(0)n ∼ (2n)!(3πκf(0)0 )−n

We don’t know enough for a Borel resummation, but we can estimate an optimal
trucation (the value of n where f(0)n Q−n is minimal)

N∗ ≈
3πκf(0)0

2
Q1/2

corresponding to an error of order ε(Q) = O
(
e−

√
Q
)
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Resurgence and the large charge

Can we understand the lattice results now?

In O(2), f00 ≈ 0.301(3), so N∗ = O
(√

Q
)
and ε(Q) = O

(
e−

√
Q
)
.

 0

 2

 4

 6

 8

 10

 12

 14

 2  4  6  8  10

D
(Q

)

Q

MC data
fit 

This fit was obtaind with N = 3 terms.
For Q = 1 we get an error ≈ 6× 10−2 and for Q = 11 the error is ≈ 5× 10−5

(Compared to e−π ≈ 4× 10−2 and e−π
√
11 = 3× 10−5).
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Resurgence and the large charge

What has happened?

• The large-charge expansion of the Wilson–Fisher point is asymptotic
• In the double-scaling limit Q → ∞, N → ∞ we control the perturbative expansion
• We can Borel-resum the expansion
• We have a geometric interpretation for the non-perturbative effects
• We can use this geometric interpretation also in the finite-N case
• We obtain an optimal truncation and estimate of the error
• The results are consistent with lattice simulations
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Conclusions
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Conclusions

Conclusions

• With the large-charge approach we can study strongly-coupled systems
perturbatively.

• Select a sector and we write a controllable effective theory.
• The strongly-coupled physics is (for the most part) subsumed in a semiclassical

state.
• Qual(nt)itative control of the non-pertubative effects.
• Compute the CFT data.
• Very good agreement with lattice (supersymmetry, large N).
• Precise and testable predictions.

Domenico Orlando The O(N) vector model at large charge


	Introduction
	Introduction

	The effective theory
	An EFT for a CFT

	Large N vs. Large Charge
	Large N vs. Large Charge

	Resurgence
	Resurgence and the large charge

	Conclusions
	Conclusions


