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Introduction

Why are we here? Conformal field theories

extrema of the RG flow critical phenomena
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Introduction

Why are we here? Conformal field theories are hard

Most conformal field theories (CFTs) lack nice limits
where they become simple and solvable.

No parameter of the theory can be
dialed to a simplifying limit.
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Introduction

Why are we here? Conformal field theories are hard

In presence of a symmetry there can be sectors of the
theory where anomalous dimension and OPE
coefficients simplify.
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Introduction

The idea

Study subsectors of the theory with fixed quantum number Q.

In each sector, a large Q is the controlling parameter
in a perturbative expansion.
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Introduction

no bootstrap here!

This approach is orthogonal to
bootstrap.
We will use an effective action.
We will access sectors that are
difficult to reach with bootstrap.
(However, arXiv:1710.11161).
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Introduction

Concrete results

We consider the O(N) vector model in three dimensions. In the IR it
flows to a conformal fixed point Wilson & Fisher.

We find an explicit formula for the dimension of the lowest primary
at fixed charge:

ΔQ =
c3/2

2
√
π
Q3/2 + 2

√
πc1/2Q1/2 − 0.094+O

(
Q−1/2

)
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Introduction

Summary of the results: O(2)
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Introduction

Scales

We want to write a Wilsonian effective action.

Choose a cutoff Λ, separate the fields into high and low frequency
φH,φL and do the path integral over the high-frequency part:

eiSΛ(φL)=
∫

DφH eiS(φH,φL)
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Scales

We want to write a Wilsonian effective action.

Choose a cutoff Λ, separate the fields into high and low frequency
φH,φL and do the path integral over the high-frequency part:

eiSΛ(φL)=
∫

DφH eiS(φH,φL)tooh
ard
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Introduction

Scales

• We look at a finite box of typical length R
• The U(1) charge Q fixes a second scale ρ1/2 ∼ Q1/2/R

1
R
≪ Λ≪ ρ1/2 ∼ Q1/2

R
≪ ΛUV

For Λ≪ ρ1/2 the effective action is weakly coupled and under
perturbative control in powers of ρ−1.
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Introduction

Wilsonian action

The Wilsonian action is fundamentally useless because it contains
infinite terms.

At best:
• a cute qualitative picture;
• might allow you to get the anomalies right;
• something that helps you organize perturbative calculations, if

your system is already weakly-coupled for some reason;
• maybe a convergent expansion in derivatives.

supe
rstit

ion
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Introduction

Too good to be true?
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Introduction

Too good to be true?

Think of Regge trajectories.
The prediction of the theory is

m2 ∝ J
(
1+O

(
J−1
))

but experimentally everything
works so well at small J that
String Theory was invented.

FIG. 2. The (n, M2)-trajectories for the states a0(10++), a2(12++) and a4(14++) with a) µ2 = 1.38 GeV2 and b) µ2 = 1.10
GeV2; Two variants for the f2(02

++)-trajectories with the slope parameter c) µ2 = 1.38 GeV2 and d) µ2 = 1.10 GeV2. The
f0(00

++)-trajectories for e) real resonance states and f) K-matrix pole states. As in Fig. 1, the open circles stand for states
predicted by the present classification.

5
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Introduction

Too good to be true?

The unreasonable effectiveness

of the large charge expansion.
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Introduction

Today’s talk

The EFT for the O(2) model in 2+ 1 dimensions

Justify and prove all my claims from first principles

Use the large-charge expansion together with supersymmetry.

Discuss some phenomenological applications

• asymptotically safe theories
• walking dynamics
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Introduction

Today’s talk

The EFT for the O(2) model in 2+ 1 dimensions

• An effective field theory (EFT) for a CFT.
• The physics at the saddle.
• State/operator correspondence for anomalous dimensions.

Justify and prove all my claims from first principles

Use the large-charge expansion together with supersymmetry.

Discuss some phenomenological applications

• asymptotically safe theories
• walking dynamics
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Introduction

Today’s talk

The EFT for the O(2) model in 2+ 1 dimensions

Justify and prove all my claims from first principles

• well-defined asymptotic expansion (in the technical sense)
• justify why the expansion works at small charge
• compute the coefficients in the effective action in large-N

Use the large-charge expansion together with supersymmetry.

Discuss some phenomenological applications

• asymptotically safe theories
• walking dynamics
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Introduction

Today’s talk

The EFT for the O(2) model in 2+ 1 dimensions

Justify and prove all my claims from first principles

Use the large-charge expansion together with supersymmetry.

• qualitatively different behavior
• compute three-point functions
• resum the large-charge expansion
• see explicitly the next saddle in the partition function

Discuss some phenomenological applications

• asymptotically safe theories
• walking dynamics
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Introduction

Domenico Orlando Introduction to the large charge expansion



18

An EFT for a CFT

An EFT for a CFT
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An EFT for a CFT

The O(2) model

The simplest example is the Wilson–Fisher (WF) point of the O(2)
model in three dimensions.
• Non-trivial fixed point of the φ4 action

LUV = ∂μφ∗ ∂μφ− u(φ∗φ)2

• Strongly coupled
• In nature: 4He.
• Simplest example of spontaneous symmetry breaking.
• Not accessible in perturbation theory. Not accessible in 4−ε.

Not accessible in large N.
• Lattice. Bootstrap.
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An EFT for a CFT

Charge fixing

We assume that the O(2) symmetry is not accidental.

We consider a subsector of fixed charge Q.
Generically, the classical solution at fixed charge breaks
spontaneously U(1) → ∅.

We have one Goldstone boson χ.
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An EFT for a CFT

An action for χ

Start with two derivatives:

L[χ] =
fπ
2

∂μχ ∂μχ−C3

(χ is a Goldstone so it is dimensionless.)

We want to describe a CFT: we can dress with a dilaton

L[σ,χ] =
fπe−2fσ

2
∂μχ ∂μχ− e−6fσC3 +

e−2fσ

2

(
∂μσ ∂μσ− ξR

f2

)
The fluctuations of χ give the Goldstone for the broken U(1), the
fluctuations of σ give the (massive) Goldstone for the broken
conformal invariance.
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An EFT for a CFT

Linear sigma model

We can put together the two fields as

Σ = σ+ ifπχ

and rewrite the action in terms of a complex scalar

ϕ =
1√
2f
e−fΣ

We get

L[ϕ] = ∂μϕ∗ ∂μϕ−ξRϕ∗ϕ− u(ϕ∗ϕ)3

Only depends on dimensionless quantities b = f 2fπ and u = 3(Cf 2)3.
Scale invariance is manifest.
The field ϕ is some complicated function of the original φ.
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An EFT for a CFT

Centrifugal barrier

The O(2) symmetry acts as a shift on χ.
Fixing the charge is the same as adding a centrifugal term ∝ 1

|ϕ|2
.

|φ 2

V
original |ϕ| 6

centrifugal
barrier

newvacuum
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An EFT for a CFT

Ground state

We can find a fixed-charge solution of the type

χ(t, x) = μt σ(t, x) =
1
f

log(v) = const.,

where

μ ∝ Q1/2 + . . . v ∝
1

Q1/2

The classical energy is

E = c3/2VQ3/2 + c1/2RVQ1/2 +O
(
Q−1/2

)

Domenico Orlando Introduction to the large charge expansion
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An EFT for a CFT

Fluctuations

The fluctuations over this ground state are described by two modes.
• A universal “conformal Goldstone”. It comes from the breaking

of the U(1).

ω =
1√
2
p

• The massive dilaton. It controls the magnitude of the quantum
fluctuations. All quantum effects are controled by 1/Q.

ω = 2μ+
p2

2μ

(This is a heavy fluctuation around the semiclassical state. It has
nothing to do with a light dilaton in the full theory)
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An EFT for a CFT

Non-linear sigma model

Since σ is heavy we can integrate it out and write a non-linear sigma
model (NLSM) for χ alone.

L[χ] = k3/2(∂μχ ∂μχ)3/2 + k1/2R(∂μχ ∂μχ)1/2 + . . .

These are the leading terms in the expansion around the classical
solution χ = μt. All other terms are suppressed by powers of 1/Q.
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An EFT for a CFT

State-operator correspondence

The anomalous dimension on Rd is the energy in the cylinder frame.

ΔSd−1

Rd

H

R × Sd−1

Sd−1

Protected by conformal invariance: a well-defined quantity.
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An EFT for a CFT

Conformal dimensions

We know the energy of the ground state.
The leading quantum effect is the Casimir energy of the conformal
Goldstone.

EG =
1

2
√
2
ζ(− 1

2 |S
2) = −0.0937 . . .

This is the unique contribution of order Q0.

Final result: the conformal dimension of the lowest operator of
charge Q in the O(2) model has the form

ΔQ =
c3/2

2
√
π
Q3/2 + 2

√
πc1/2Q1/2 − 0.094+O

(
Q−1/2

)
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An EFT for a CFT

The O(2N) model

Next step: O(2N). We take 2N fields and an action that is invariant
under

φa → Ma
bφ

b, MTM = 1.

The conserved current associated to the global O(2n) symmetry is
now matrix-valued and has the form

(jμ)ab = (φa ∂μφb −φb ∂μφa).

we can only fix the rank(O(2n)) coefficients in the directions of the
mutually commuting Cartan generators HI.

qI =
1
2
⟨QHI⟩ ,

[
HI,HJ

]
= 0, ⟨HIHJ⟩ = 2δIJ.
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An EFT for a CFT

The O(2N) model

The qI transform under the action ofO(2n), while the spectrum of the
system is invariant.
The energy of a state of fixed charge Q can only depend on the
conjugacy class of Q.
There exists a homogeneous ground state. There is always an O(2n)
transformationM such that

MQM−1 =
n

∑
I=1

q̂IHI =


0 q̂
−q̂ 0

0 0
0 0

. . .

.

where

q̂ = q1 + . . .qN
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An EFT for a CFT

The O(2N) model

The ground-state energy only depends on the sum of the charges

q̂ = q1 + · · ·+ qN

and takes the same form

E =
c3/2(N)
2
√
π

q̂3/2 + 2
√
πc1/2(N)q̂1/2 +O

(
q̂−1/2

)
The coefficients depend on N and cannot be computed in the EFT
(but e.g. in large-N).
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An EFT for a CFT

Fluctuations

The symmetry breaking pattern is

O(2N)
exp.−→ U(N)

spont.−→ U(N− 1)

and there are dim(U(N)/U(N− 1)) = 2N− 1 degrees of
freedom (DOF).
• One singlet, the universal conformal Goldstone ω = 1√

2
p

• One vector of U(N− 1), with quadratic dispersion ω = p2

2μ + . . .

We have singled out the time. The system is non-relativistic.

antiferromagnet ω ∝ p

ferromagnetω ∝ p2 (count double)
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An EFT for a CFT

Type II Goldstones

The inverse propagator for the type-II is

D−1 =

( 1
2 (∇2 − ∂2

0) μ ∂0

−μ ∂0
1
2 (∇2 − ∂2

0)

)
and the dispersion relation

ω =
√
p2 +μ2 ±μ.

Each type-II Goldstone counts for two DOF:

1+ 2× (N− 1) = 2N− 1.

Only the type-I has a Q0 contribution: it is universal.
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An EFT for a CFT

O(4) on the lattice
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j

Δj =
c3/2

2
√
π
(2j)3/2 + 2

√
πc1/2(2j)1/2 − 0.094+O

(
j−1/2

)
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An EFT for a CFT

What happened?

We started from a CFT.
There is no mass gap, there are no particles, there is no Lagrangian.

We picked a sector.

In this sector the physics is described by a semiclassical configuration
plus massless fluctuations.

The full theory has no small parameters but we can study this sector
with a simple EFT.
We are in a strongly coupled regime but we can compute physical
observables using perturbation theory.
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Large N vs. Large Charge

Large N vs. Large Charge
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Large N vs. Large Charge

The model

φ4 model on R ×Σ for N complex fields

Sθ[ϕi] =
N

∑
i=1

∫
dtdΣ

[
gμν(∂μϕi)

∗(∂νϕi) + rϕ∗
i ϕi +

u
2
(ϕ∗

i ϕi)
2
]

It flows to the WF in the IR limit u → ∞ when r is fine-tuned.
We compute the partition function at fixed charge

Z(Q1, . . . ,QN) = Tr

[
e−βH

N

∏
i=1
δ(Q̂i −Qi)

]
where

Q̂i =
∫

dΣ j0i = i
∫

dΣ [ϕ̇∗
i ϕi −ϕ∗

i ϕ̇i].

Dimensions of operators of fixed charge Q on R3 (state/operator):

Δ(Q) = − 1
β

logZS2(Q).
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Large N vs. Large Charge

Fix the charge

Explicitly

Z =
∫ π
−π

N

∏
i=1

dθi

2π

N

∏
i=1

eiθiQi Tr

[
e−βH

N

∏
i=1

e−iθiQ̂i

]
.

Since Q̂ depends on the momenta, the integration is not trivial but
well understood.

ZΣ(Q) =
∫ π
−π

dθ
2π

e−iθQ
∫

ϕ(2πβ)=eiθϕ(0)

Dϕi e−S[ϕ]

=
∫ π
−π

dθ
2π

e−iθQ
∫

ϕ(2πβ)=ϕ(0)

Dϕi e−S
θ[ϕ]
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Large N vs. Large Charge

Fix the charge

Explicitly

Z =
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−π

N

∏
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2π

N

∏
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N
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covariant derivative
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Large N vs. Large Charge

Effective actions

The covariant derivative approach:

Sθ[ϕ] =
N

∑
i=1

∫
dtdΣ

(
(Dμϕi)

∗(Dμϕi) +
R
8
ϕ∗
i ϕi + 2u(ϕ∗

i ϕi)
2
)

where{
D0ϕ = ∂0ϕ+ iθβϕ
Diϕ = ∂iϕ

Stratonovich transformation: introduce Lagrange multiplier λ and
rewrite the action as

SQ =
N

∑
i=1

[
−iθiQi +

∫
dtdΣ

[(
Di
μϕi

)∗(
Di
μϕi

)
+ (r+λ)ϕ∗

i ϕi

]]
Expand around the VEV

ϕi =
1√
2
Ai + ui, λ =

(
m2 − r

)
+ λ̂
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Large N vs. Large Charge

Saddle point equations

With some massaging, we find the final equations{
FΣ (Q) = mQ+Nζ(− 1

2 |Σ,m),
mζ( 12 |Σ,m) = −Q

N .

The control parameter is actually Q/N.
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Large N vs. Large Charge

Large Q/N

If Q/N ≫ 1 we can use Weyl’s asymptotic expansion.

Tr
(
eΔΣt

)
=

∞

∑
n=0

Kntn/2−1.

The zeta function is written in terms of the geometry of Σ (heat
kernel coefficients)

mΣ =

√
4π
V

(
Q
2N

)1/2

+
R
24

√
V
4π

(
Q
2N

)−1/2

+ . . .

FΣ
2N

=
2
3

√
4π
V

(
Q
2N

)3/2

+
R
12

√
V
4π

(
Q
2N

)1/2

+ . . .
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Large N vs. Large Charge

Order N

FS2(Q) =
4N
3

(
Q
2N

)3/2

+
N
3

(
Q
2N

)1/2

− 7N
360

(
Q
2N

)−1/2

− 71N
90720

(
Q
2N

)−3/2

+O
(
e−

√
Q/(2N)

)
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Large N vs. Large Charge

Order N

FS2(Q) =
4N
3

(
Q
2N

)3/2

+
N
3

(
Q
2N

)1/2

− 7N
360

(
Q
2N

)−1/2

− 71N
90720

(
Q
2N

)−3/2

+O
(
e−

√
Q/(2N)

)

leadingQ 3/2
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Large N vs. Large Charge

Order N

FS2(Q) =
4N
3

(
Q
2N

)3/2

+
N
3

(
Q
2N
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360

(
Q
2N

)−1/2

− 71N
90720

(
Q
2N

)−3/2
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(
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√
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)

1/Q
expansion
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Large N vs. Large Charge

Order N
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Q
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EFTcoefficients

EFTcoefficients
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Large N vs. Large Charge

Order N

FS2(Q) =
4N
3

(
Q
2N

)3/2

+
N
3

(
Q
2N

)1/2

− 7N
360

(
Q
2N

)−1/2

− 71N
90720

(
Q
2N

)−3/2

+O
(
e−

√
Q/(2N)

)

asymptotic expansion
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Large N vs. Large Charge

Was it worth it?
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Large N vs. Large Charge

Final result

Δ(Q) =

(
4N
3

+O(1)
)(

Q
2N

)3/2

+

(
N
3
+O(1)

)(
Q
2N

)1/2

+ . . .

− 0.0937 . . .

0 2 4 6 8 10

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

N

c 3
2

0 2 4 6 8
0.0

0.1

0.2

0.3

0.4

N

c 1
2

would you like to know more?

Domenico Orlando Introduction to the large charge expansion



44

Large N vs. Large Charge

Final result

Δ(Q) =

(
4N
3

+O(1)
)(

Q
2N

)3/2

+

(
N
3
+O(1)

)(
Q
2N

)1/2

+ . . .

− 0.0937 . . .
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Large charge and supersymmetry

Large charge and supersymmetry
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Large charge and supersymmetry

And Now for Something Completely Different

All the models that you have seen have something in common:
isolated vacuum. No moduli space.
What happens when there is a flat direction?

Many known examples of (non-Lagrangian) N ≥ 2 SCFT in four
dimensions.
Coulomb branch with a dimension-one moduli space: all the physics
is encoded in a single operator O and every chiral operator is just On.

We will write an effective action for a canonically-normalized
dimension-one vector multiplet Φ.

Domenico Orlando Introduction to the large charge expansion



47

Large charge and supersymmetry

Effective action

We have a single vector multiplet. The kinetic term is just

Lk =
∫

d4θΦ2 + c.c. = |∂φ|2 + fermions+ gauge fields

There will also be a WZ term for the Weyl symmetry and U(1) charge.
Because of N = 2, everything else is a D-term and does not
contribute to protected quantities.

LEFT = LK +αLWZ

The coefficient α fixes the a-anomaly of the EFT. It has to match the
anomaly in the UV.
Claim: at large R-charge this action is all you need for any N = 2
theory (with one-dimensional moduli space).

from
anomaly
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Large charge and supersymmetry

Observables

Three-point function of the Coulomb branch operators〈
Φn1(x1)Φn2(x2)Φ̄

n1+n2(x3)
〉
=

Cn1,n2,n1+n2

|x1 − x3|2n1Δ|x2 − x3|2n2Δ

The OPE of Φ with itself is regular, so we can set x2 = x1 and the
three-point function is actually a two-point function.

Cn′,n−n′,n = |x1 − x2|2nΔ
〈
Φn(x1)Φ̄

n(x2)
〉

Q = nΔ is the controlling parameter (it’s the R-charge)

The coefficients satisfy a Toda lattice equation that can be solved
using as boundary condition the one loop EFT computation.
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Large charge and supersymmetry

Final result

The final result for the generator O of the Coulomb branch is:

〈
On(x1)Ōn(x2)

〉
= Cn(τ, τ̄)

Γ(2nΔ+α+ 1)

|x1 − x2|2nΔ

The coefficient Cn is scheme-dependent.
The gamma term is universal, only depends on α.
This result is valid for any rank-one theory, Lagrangian or not.

We have completely resummed the 1/Q expansion.
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Large charge and supersymmetry

Comparison with localization

How well does this work?
For the special case of SU(2) SQCD with Nf = 4 we can compare with
localization. arXiv:1602.05971
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Large charge and supersymmetry

Comparison with boostrap

For strongly coupled theories one can use bootstrap to place bounds
on the three-point coefficients with n = 1.
This is the worst possible situation for us. And still…

1.0 1.5 2.0 2.5 3.0
∆ϕ0

1

2

3

4
λ2
ϕ2

H0
H1
H2
SU(N)
MFT

Taken from arXiv:2006.01847

would you like to know more?
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Asymptotically safe QFT

An asymptotically safe QFT
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Asymptotically safe QFT

IR vs. UV

We have discussed an IR fixed point.
The fixed charge induces a scale ΛQ = Q1/d

r .
We need a hierarchy for the scale Λ of the EFT

1
r
≪ Λ≪ ΛQ ≪ ΛUV

The situation improves if we consider a ultraviolet (UV) fixed point.

1
r
≪ ΛUV ≪ Λ≪ ΛQ

and we can take the charge as large as we like.
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Asymptotically safe QFT

An asymptotically safe theory

L = − 1
2

Tr(FμνFμν) + Tr
(
Q̄i/DQ

)
+ yTr

(
Q̄LHQR + Q̄RH†QL

)
+ Tr

(
∂μH† ∂μH

)
− uTr

(
H†H

)2
− v(TrH†H)2 − R

6
Tr
(
H†H

)
.

In the Veneziano limit of NF → ∞, NC → ∞ with the ratio NF/NC
fixed, this theory is asymptotically safe.

Perturbatively-controlled UV fixed point

α∗
g =

26
57
ε, α∗

y =
4
19
ε, α∗

h =

√
23− 1
19

ε, α∗
v = −0.13ε.
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Asymptotically safe QFT

An asymptotically safe theory

New features from our point of view
• H is a matrix. There is a large non-Abelian global symmetry
• there are fermions
• there are gluons
• it’s a four-dimensional system
• we have a trustable effective action
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Asymptotically safe QFT

The scalar sector

Inspired by the O(2) model we use a homogeneous ansatz

H0 = e2iMtB,

and the equations of motion (EOM) reduce to

2M2 = uB2 + vTr
(
B2
)
− R

12
.

For simplicity

QL = −QR = J
(
1 0
0 −1

)
,

where 1 is the NF/2×NF/2 identity matrix.
The ground state is

M = μ
(
1 0
0 −1

)
, B = b

(
1 0
0 1

)
.
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Asymptotically safe QFT

Ground state energy and fluctuations

The ground state has energy

E =
3
2

N2
F

αh +αv

(
2π
V

)1/3
[
J 4/3 +

R
36

(
V

2π2

)2/3

J 2/3

− 1
144

(
R
6

)2( V
2π2

)4/3

J 0 +O
(
J −2/3

)]

which is a natural expansion in

J = 2J
αh +αv

NF
≫ 1

We have again an expansion in powers of the charge.
The leading exponent is 4/3 because we are in four dimensions.
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Asymptotically safe QFT

Goldstones

The symmetry-breaking pattern is quite involved

SU(NF)× SU(NF)× U(1)
exp.−→ C(M)× SU(NF)

spont.−→ C(M).

where C(M) = SU(NF/2)× SU(NF/2)× U(1)2.
Type-I and type-II Goldstones.
• One conformal Goldstone ω = p√

3
, which is a singlet of C(M)

• One bifundamental with ω = p2

2μ
• One field in the (Adj,1) and one in the (1,Adj) with

ω =
√

αh
3αh+2αv

p

Total count:

1+ 2× (NF/2)2 + 2× (N2
F/4− 1) = N2

F − 1 = dim(SU(NF))
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Asymptotically safe QFT

Summing it up

• We can use the large-charge expansion for asymptotically safe
theories

• Being in the UV, the large-charge condition is more natural
• For the QCD-inspired model that we have considered:

• Fermions and gluons decouple.
• 1/J expansion of the anomalous dimensions, starting at J 4/3

• Rich spectrum of Goldstone modes, with linear and quadratic
dispersions.

would you like to know more?
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A light dilaton

Going away from conformality
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A light dilaton

Going away away from conformality

CFTs are very interesting but very constrained.

There is a lot of interesting physics that happens away from
conformality.
If we don’t go “too far” we can still use large charge effectively.

We will find a very distinct signature of new physics associated to a
small dilaton mass in the EFT.
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A light dilaton

Walking dynamics

For example the walking phase when β functions get close to zero
remaining very flat.

λ

β(λ)
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A light dilaton

The EFT

We mimick it adding a small mass for the dilaton.

Consider a system with U(1) global symmetry in four dimensions.

L[σ,χ] =
f 2πe

−2fσ

2
∂μχ ∂μχ− e−4fσC4 +

e−2fσ

2

(
∂μσ ∂μσ− ξR

f2

)
− m2

σ
16f 2

(
e−4fσ + 4fσ− 1

)
mσ is the mass of σ (around σ = 0) that is due to the underlying
(walking) dynamics.
It measures the breaking of scale invariance

Tμμ =
m2
σ
f
σ.
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A light dilaton

What is the dilaton mass?

In the conformal model at fixed charge the fluctuations of the dilaton
around the classical solution are heavy.

Very little to do with mσ, which is a measure of how much the full
theory is non-conformal.

In the large charge approach it will appear in the semiclassical
ground state energy.
The semiclassical state resums the quantum effects.
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A light dilaton

The ground state energy

We just need to solve at fixed values of the charge.

The energy in the cylinder frame has a new, characteristic term

r0Ecyl =
c4/3

(4π2)1/3Q
4/3 + c2/3Q2/3 −

π2m2
σr

4
0

3f 2
log(Q) + . . .

This is the first time that a log(Q) term appears in this game.
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A light dilaton

The two-point function

Close to the fixed point, we can still use the state-operator
correspondence.

The two-point function on R4 for operators of fixed charge is

⟨OQ(0)O−Q(x)⟩ =
1

|x|2Δ

where Δ has a log(Q) correction with respect to the dimension at the
fixed point Δ∗

Δ = Δ∗
(
1− m2

σ
24c4/3f 2μ4 log(Q)

)
This is a clear signature of a light dilaton in the walking dynamics.
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A light dilaton

Fluctuations

We can also study the fluctuations on top of the semiclassical
fixed-charge state.
We find again two modes.
• A massless mode, which is not anymore exactly conformal

ω =
1√
3

(
1+

m2
σ

9c4/3f 2μ4

)
p

• A massive mode which has essentially the same mass as in the
CFT case

ω = 2μ+
p2

2μ

This is the mass of the fluctuation of σ around the vacuum
expectation value (VEV).
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A light dilaton

Summing it up

• The large-charge approach can be used for walking theories.
• We predict a precise signature of a light dilaton in the two-point

functions.
• We have shown the mechanism for the simplest theory.
• The construction can be easily generalized to more realistic

situations (around the conformal window).
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Conclusions

In conclusion

• With the large-charge approach we can study strongly-coupled
systems perturbatively.

• Select a sector and we write a controllable effective theory.
• The strongly-coupled physics is (for the most part) subsumed in a

semiclassical state.
• Compute the CFT data.
• Very good agreement with lattice (supersymmetry, large N).
• Precise and testable predictions.
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