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Introduction
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Introduction

Why are we here? Conformal field theories

extrema of the RG flow critical phenomena
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Introduction

Why are we here? Conformal field theories are hard

Most conformal field theories (CFTs) lack nice limits
where they become simple and solvable.

No parameter of the theory can be
dialed to a simplifying limit.
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Introduction

Why are we here? Conformal field theories are hard

In presence of a symmetry there can be sectors of the
theory where anomalous dimension and OPE
coefficients simplify.
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Introduction

The idea

Study subsectors of the theory with fixed quantum number Q.

In each sector, a large Q is the controlling parameter
in a perturbative expansion.
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Introduction

no bootstrap here!

This approach is orthogonal to
bootstrap.
We will use an effective action.
We will access sectors that are
difficult to reach with bootstrap.
(However, arXiv:1710.11161).
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Introduction

Concrete results

We consider the O(N) vector model in three dimensions. In the IR it
flows to a conformal fixed point Wilson & Fisher.

We find an explicit formula for the dimension of the lowest primary
at fixed charge:

ΔQ =
c3/2

2
√
π
Q3/2 + 2

√
πc1/2Q1/2 − 0.094+O

(
Q−1/2

)
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Introduction

Summary of the results: O(2)
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Introduction

Scales

We want to write a Wilsonian effective action.

Choose a cutoff Λ, separate the fields into high and low frequency
φH,φL and do the path integral over the high-frequency part:

eiSΛ(φL)=
∫

DφH eiS(φH,φL)
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Scales

We want to write a Wilsonian effective action.

Choose a cutoff Λ, separate the fields into high and low frequency
φH,φL and do the path integral over the high-frequency part:

eiSΛ(φL)=
∫

DφH eiS(φH,φL)tooh
ard
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Introduction

Scales

• We look at a finite box of typical length R
• The U(1) charge Q fixes a second scale ρ1/2 ∼ Q1/2/R

1
R
≪ Λ≪ ρ1/2 ∼ Q1/2

R
≪ ΛUV

For Λ≪ ρ1/2 the effective action is weakly coupled and under
perturbative control in powers of ρ−1.
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Introduction

Wilsonian action

The Wilsonian action is fundamentally useless because it contains
infinite terms.

At best:
• a cute qualitative picture;
• might allow you to get the anomalies right;
• something that helps you organize perturbative calculations, if

your system is already weakly-coupled for some reason;
• maybe a convergent expansion in derivatives.

supe
rstit

ion
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Introduction

Too good to be true?
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Introduction

Too good to be true?

Think of Regge trajectories.
The prediction of the theory is

m2 ∝ J
(
1+O

(
J−1
))

but experimentally everything
works so well at small J that
String Theory was invented.

FIG. 2. The (n, M2)-trajectories for the states a0(10++), a2(12++) and a4(14++) with a) µ2 = 1.38 GeV2 and b) µ2 = 1.10
GeV2; Two variants for the f2(02

++)-trajectories with the slope parameter c) µ2 = 1.38 GeV2 and d) µ2 = 1.10 GeV2. The
f0(00

++)-trajectories for e) real resonance states and f) K-matrix pole states. As in Fig. 1, the open circles stand for states
predicted by the present classification.

5
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Introduction

Too good to be true?

The unreasonable effectiveness

of the large charge expansion.
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Introduction

Today’s talk

The EFT for the O(2) model in 2+ 1 dimensions

Justify and prove all my claims from first principles

Use the large-charge expansion together with supersymmetry.

• qualitatively different behavior
• compute three-point functions
• resum the large-charge expansion
• see explicitly the next saddle in the partition function
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Introduction

Today’s talk

The EFT for the O(2) model in 2+ 1 dimensions

• An effective field theory (EFT) for a CFT.
• The physics at the saddle.
• State/operator correspondence for anomalous dimensions.

Justify and prove all my claims from first principles

Use the large-charge expansion together with supersymmetry.

• qualitatively different behavior
• compute three-point functions
• resum the large-charge expansion
• see explicitly the next saddle in the partition function
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Introduction

Today’s talk

The EFT for the O(2) model in 2+ 1 dimensions

Justify and prove all my claims from first principles

• well-defined asymptotic expansion (in the technical sense)
• justify why the expansion works at small charge
• compute the coefficients in the effective action in large-N

Use the large-charge expansion together with supersymmetry.

• qualitatively different behavior
• compute three-point functions
• resum the large-charge expansion
• see explicitly the next saddle in the partition function
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Introduction

Domenico Orlando Introduction to the large charge expansion



18

An EFT for a CFT

An EFT for a CFT
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An EFT for a CFT

The O(2) model

The simplest example is the Wilson–Fisher (WF) point of the O(2)
model in three dimensions.
• Non-trivial fixed point of the φ4 action

LUV = ∂μφ∗ ∂μφ− u(φ∗φ)2

• Strongly coupled
• In nature: 4He.
• Simplest example of spontaneous symmetry breaking.
• Not accessible in perturbation theory. Not accessible in 4−ε.

Not accessible in large N.
• Lattice. Bootstrap.
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An EFT for a CFT

Charge fixing

We assume that the O(2) symmetry is not accidental.

We consider a subsector of fixed charge Q.
Generically, the classical solution at fixed charge breaks
spontaneously U(1) → ∅.

We have one Goldstone boson χ.
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An EFT for a CFT

An action for χ

Start with two derivatives:

L[χ] =
fπ
2

∂μχ ∂μχ−C3

(χ is a Goldstone so it is dimensionless.)

We want to describe a CFT: we can dress with a dilaton

L[σ,χ] =
fπe−2fσ

2
∂μχ ∂μχ− e−6fσC3 +

e−2fσ

2

(
∂μσ ∂μσ− ξR

f2

)
The fluctuations of χ give the Goldstone for the broken U(1), the
fluctuations of σ give the (massive) Goldstone for the broken
conformal invariance.
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An EFT for a CFT

Linear sigma model

We can put together the two fields as

Σ = σ+ ifπχ

and rewrite the action in terms of a complex scalar

ϕ =
1√
2f
e−fΣ

We get

L[ϕ] = ∂μϕ∗ ∂μϕ−ξRϕ∗ϕ− u(ϕ∗ϕ)3

Only depends on dimensionless quantities b = f 2fπ and u = 3(Cf 2)3.
Scale invariance is manifest.
The field ϕ is some complicated function of the original φ.
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An EFT for a CFT

Centrifugal barrier

The O(2) symmetry acts as a shift on χ.
Fixing the charge is the same as adding a centrifugal term ∝ 1

|ϕ|2
.

|φ 2

V
original |ϕ| 6

centrifugal
barrier

newvacuum
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An EFT for a CFT

Ground state

We can find a fixed-charge solution of the type

χ(t, x) = μt σ(t, x) =
1
f

log(v) = const.,

where

μ ∝ Q1/2 + . . . v ∝
1

Q1/2

The classical energy is

E = c3/2VQ3/2 + c1/2RVQ1/2 +O
(
Q−1/2

)

Domenico Orlando Introduction to the large charge expansion



25

An EFT for a CFT

Fluctuations

The fluctuations over this ground state are described by two modes.
• A universal “conformal Goldstone”. It comes from the breaking

of the U(1).

ω =
1√
2
p

• The massive dilaton. It controls the magnitude of the quantum
fluctuations. All quantum effects are controled by 1/Q.

ω = 2μ+
p2

2μ

(This is a heavy fluctuation around the semiclassical state. It has
nothing to do with a light dilaton in the full theory)
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An EFT for a CFT

Non-linear sigma model

Since σ is heavy we can integrate it out and write a non-linear sigma
model (NLSM) for χ alone.

L[χ] = k3/2(∂μχ ∂μχ)3/2 + k1/2R(∂μχ ∂μχ)1/2 + . . .

These are the leading terms in the expansion around the classical
solution χ = μt. All other terms are suppressed by powers of 1/Q.
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An EFT for a CFT

State-operator correspondence

The anomalous dimension on Rd is the energy in the cylinder frame.

ΔSd−1

Rd

H

R × Sd−1

Sd−1

Protected by conformal invariance: a well-defined quantity.
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An EFT for a CFT

Conformal dimensions

We know the energy of the ground state.
The leading quantum effect is the Casimir energy of the conformal
Goldstone.

EG =
1

2
√
2
ζ(− 1

2 |S
2) = −0.0937 . . .

This is the unique contribution of order Q0.

Final result: the conformal dimension of the lowest operator of
charge Q in the O(2) model has the form

ΔQ =
c3/2

2
√
π
Q3/2 + 2

√
πc1/2Q1/2 − 0.094+O

(
Q−1/2

)
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An EFT for a CFT

The O(2N) model

Next step: O(2N).
N charges can be fixed.

Again, homogeneous ground state.
The ground-state energy only depends on the sum of the charges

Q = Q1 + · · ·+QN

and takes the same form

E =
c3/2(N)
2
√
π

Q3/2 + 2
√
πc1/2(N)Q1/2 +O

(
Q−1/2

)
The coefficients depend on N and cannot be computed in the EFT
(but e.g. in large-N).
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An EFT for a CFT

Fluctuations

The symmetry breaking pattern is

O(2N)
exp.−→ U(N)

spont.−→ U(N− 1)

and there are dim(U(N)/U(N− 1)) = 2N− 1 degrees of
freedom (DOF).
• One singlet, the universal conformal Goldstone ω = 1√

2
p

• One vector of U(N− 1), with quadratic dispersion ω = p2

2μ
Each type-II Goldstone counts for two DOF:

1+ 2× (N− 1) = 2N− 1.

Only the type-I has a Q0 contribution: it is universal.
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An EFT for a CFT

O(4) on the lattice
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An EFT for a CFT

What happened?

We started from a CFT.
There is no mass gap, there are no particles, there is no Lagrangian.

We picked a sector.

In this sector the physics is described by a semiclassical configuration
plus massless fluctuations.

The full theory has no small parameters but we can study this sector
with a simple EFT.
We are in a strongly coupled regime but we can compute physical
observables using perturbation theory.
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Large N vs. Large Charge

Large N vs. Large Charge
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Large N vs. Large Charge

The model

φ4 model on R ×Σ for N complex fields

Sθ[ϕi] =
N

∑
i=1

∫
dtdΣ

[
gμν(∂μϕi)

∗(∂νϕi) + rϕ∗
i ϕi +

u
2
(ϕ∗

i ϕi)
2
]

It flows to the WF in the IR limit u → ∞ when r is fine-tuned.
We compute the partition function at fixed charge

Z(Q1, . . . ,QN) = Tr

[
e−βH

N

∏
i=1
δ(Q̂i −Qi)

]
where

Q̂i =
∫

dΣ j0i = i
∫

dΣ [ϕ̇∗
i ϕi −ϕ∗

i ϕ̇i].

Dimensions of operators of fixed charge Q on R3 (state/operator):

Δ(Q) = − 1
β

logZS2(Q).
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Large N vs. Large Charge

Fix the charge

Explicitly

Z =
∫ π
−π

N

∏
i=1

dθi

2π

N

∏
i=1

eiθiQi Tr

[
e−βH

N

∏
i=1

e−iθiQ̂i

]
.

Since Q̂ depends on the momenta, the integration is not trivial but
well understood.

ZΣ(Q) =
∫ π
−π

dθ
2π

e−iθQ
∫

ϕ(2πβ)=eiθϕ(0)

Dϕi e−S[ϕ]

=
∫ π
−π

dθ
2π

e−iθQ
∫

ϕ(2πβ)=ϕ(0)

Dϕi e−S
θ[ϕ]
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Large N vs. Large Charge

Effective actions

The covariant derivative approach:

Sθ[ϕ] =
N

∑
i=1

∫
dtdΣ

(
(Dμϕi)

∗(Dμϕi) +
R
8
ϕ∗
i ϕi + 2u(ϕ∗

i ϕi)
2
)

where{
D0ϕ = ∂0ϕ+ iθβϕ
Diϕ = ∂iϕ

Stratonovich transformation: introduce Lagrange multiplier λ and
rewrite the action as

SQ =
N

∑
i=1

[
−iθiQi +

∫
dtdΣ

[(
Di
μϕi

)∗(
Di
μϕi

)
+ (r+λ)ϕ∗

i ϕi

]]
Expand around the VEV

ϕi =
1√
2
Ai + ui, λ =

(
m2 − r

)
+ λ̂ (1)

Domenico Orlando Introduction to the large charge expansion



37

Large N vs. Large Charge

Effective action for λ̂

We can now integrate out the ui and get an effective action for λ̂
alone

Sθ[λ̂] =
N

∑
i=1

[
Vβ

(
θ2
i

β2 +m2

)
A2
i
2

+ Tr
[
log
(
−Di

μD
i
μ +m2 + λ̂

)]
− A2

i
2

Tr
(
λ̂Δλ̂

)]
.

This is a non-local action for λ̂, that can be expanded order-by-order
in 1/N. Today we will only look at the leading order (saddle point).
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Large N vs. Large Charge

Saddle point equations



∂SQ
∂m2 =

N

∑
i=1

[
Vβ
2
A2
i +ζ(1|θi,Σ,m)

]
= 0,

∂SQ
∂θi

= −iQ+
θi

β
VA2

i +
1
s

∂

∂θi
ζ(s|θi,Σ,m)

∣∣∣∣
s=0

= 0

∂SQ
∂Ai

= Vβ

(
θ2
i

β2 +m2

)
Ai = 0.

where

ζ(s|θ,Σ,m) = ∑
n∈Z

∑
p

((
2πn
β

+
θ
β

)2

+ E(p)2 +m2

)−s

.
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Large N vs. Large Charge

Saddle point equations

With some massaging, we find the final equations{
FΣ (Q) = mQ+Nζ(− 1

2 |Σ,m),
mζ( 12 |Σ,m) = −Q

N .

The control parameter is actually Q/N.
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Large N vs. Large Charge

Small Q/N

The zeta function can be expanded in perturbatively in small Q/N.
Result:

Δ(Q)

Q
=

1
2
+

4
π2

Q
N

+
16
(
π2 − 12

)
Q2

3π4N2 + . . .

• Expansion of a closed expression
• Start with the engineering dimension 1/2
• Reproduce an infinite number of diagrams from a fixed-charge

one-loop calculation
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Large N vs. Large Charge

Large Q/N

If Q/N ≫ 1 we can use Weyl’s asymptotic expansion.

Tr
(
eΔΣt

)
=

∞

∑
n=0

Kntn/2−1.

The zeta function is written in terms of the geometry of Σ (heat
kernel coefficients)

mΣ =

√
4π
V

(
Q
2N

)1/2

+
R
24

√
V
4π

(
Q
2N

)−1/2

+ . . .

FΣ
2N

=
2
3

√
4π
V

(
Q
2N

)3/2

+
R
12

√
V
4π

(
Q
2N

)1/2

+ . . .
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Large N vs. Large Charge

Order N

FS2(Q) =
4N
3

(
Q
2N

)3/2

+
N
3

(
Q
2N

)1/2

− 7N
360

(
Q
2N

)−1/2

− 71N
90720

(
Q
2N

)−3/2

+O
(
e−

√
Q/(2N)

)
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Q
2N

)1/2
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(
Q
2N
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(
Q
2N
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√
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Large N vs. Large Charge
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Large N vs. Large Charge
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Q
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Large N vs. Large Charge

Order N

FS2(Q) =
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3

(
Q
2N

)3/2

+
N
3

(
Q
2N

)1/2

− 7N
360

(
Q
2N

)−1/2

− 71N
90720

(
Q
2N

)−3/2

+O
(
e−

√
Q/(2N)

)

asymptotic expansion
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Large N vs. Large Charge

Universal term: integrate all but one
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Large N vs. Large Charge

Was it worth it?
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Large N vs. Large Charge

Final result

Δ(Q) =

(
4N
3

+O(1)
)(

Q
2N

)3/2

+

(
N
3
+O(1)

)(
Q
2N

)1/2

+ . . .

− 0.0937 . . .

0 2 4 6 8 10

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

N

c 3
2

0 2 4 6 8
0.0

0.1

0.2

0.3

0.4

N

c 1
2

Domenico Orlando Introduction to the large charge expansion



45

Large N vs. Large Charge

Final result
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Large charge and supersymmetry

Large charge and supersymmetry
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Large charge and supersymmetry

And Now for Something Completely Different

All the models that you have seen have something in common:
isolated vacuum. No moduli space.
What happens when there is a flat direction?

Many known examples of (non-Lagrangian) N ≥ 2 SCFT in four
dimensions.
Coulomb branch with a dimension-one moduli space: all the physics
is encoded in a single operatorΦ and every chiral operator is justΦn.
We will write an effective action for Φ.
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Large charge and supersymmetry

Effective action

We have a single vector multiplet. The kinetic term is just

Lk =
∫

d4θΦ2 + c.c. = |∂φ|2 + fermions+ gauge fields

There will also be a WZ term for the Weyl symmetry and U(1) charge.
Because of N = 2, everything else is a D-term and does not
contribute to protected quantities.

LEFT = LK +αLWZ

The coefficient α fixes the a-anomaly of the EFT. It has to match the
anomaly in the UV.
Claim: at large R-charge this action is all you need for any N = 2
theory (with one-dimensional moduli space).

from
anomaly
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Large charge and supersymmetry

Observables

Three-point function of the Coulomb branch operators〈
Φn1(x1)Φn2(x2)Φ̄

n1+n2(x3)
〉
=

Cn1,n2,n1+n2

|x1 − x3|2n1D|x2 − x3|2n2D

The OPE of Φ with itself is regular, so we can set x2 = x1 and the
three-point function is actually a two-point function.

Cn′,n−n′,n = |x1 − x2|2nD
〈
Φn(x1)Φ̄

n(x2)
〉
= eqn−q0

Q = nD is the controlling parameter (it’s the R-charge)
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Large charge and supersymmetry

Two-point function

〈
Φn(x1)Φ̄

n(x2)
〉
=
∫
Dφφn(x1)φ̄

n(x2)e−Sk

We can just pull the sources in the action and minimize

Sk + Ssources ∝ k0 +
∫

d4x
[

∂μφ ∂μφ̄

−Q logφδ(x− x1)−Q log φ̄δ(x− x2)
]

At the minimum:

S = k0 + k1Q−Q logQ+ 2Q log |x1 − x2|+O
(
Q0
)

so

qn = k0 + k1Q+
(
Q+ 1

2

)
log(Q) +O

(
Q0
)
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EFTparameters
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Large charge and supersymmetry

Two-point function: tree level

Adding the WZ term gives another contribution

qn = k1Q+ k0 +Q log(Q) +
(
α+ 1

2

)
log(Q) +O

(
Q0
)

This is the tree-level result.

Corrections from quantum fluctuations in the path integral.
No other tree-level terms.
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Large charge and supersymmetry

Two-point function: quantum corrections

1/Q is the loop-counting parameter because we are expanding
around a vacuum expectation value (VEV) that depends on Q.
Sum of a ground state piece and a series in 1/Q.

qn = k0 + k1Q+Q log(Q) +
(
α+ 1

2

)
log(Q) +

∞

∑
m=1

km(α)

Qm

Compute order-by-order

k

+

k

+

k

+

k

+

k

k1(α) =
1
2

(
α2 +α+

1
6

)
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Large charge and supersymmetry

Supersymmetry to the rescue

There is a better way.
The qn satisfy a Toda lattice equation arXiv:0910.4963

∂τ∂τ̄qn = eqn+1−qn − eqn−qn−1

This is integrable, but it’s hard to find explicit solutions.
Unless…

…we use the form that follows from the existence of the asymptotic
expansion

qn = k0(τ, τ̄) +Qf(τ, τ̄) +Q log(Q)

+
(
α+ 1

2

)
log(Q) +

∞

∑
m=1

km(α)

Qm
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Large charge and supersymmetry

Recursion relation

We can actually solve the recursion relation, using the value of k1(α)
found at one loop.

qn = k0(τ, τ̄) +Qf(τ, τ̄) + log(Γ(2n+α+ 1))

The log term is universal, only depends on α.

We have completely resummed the 1/Q expansion.
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Large charge and supersymmetry

Comparison with localization

How well does this work?
For the special case of SU(2) SQCD with Nf = 4 we can compare with
localization. arXiv:1602.05971
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Large charge and supersymmetry

A semi-empirical instanton
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Large charge and supersymmetry

A semi-empirical instanton

We can do better.
We have resummed the 1/Q expansion around one vacuum.
Exponential corrections coming from the next saddle in the path
integral.
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−b
√
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Large charge and supersymmetry

Comparison with localization

Once we add the first exponential correction
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Large charge and supersymmetry

Comparison with localization

Once we add the first exponential correction (fixed τ = 6)
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Large charge and supersymmetry

Comparison with bootstrap

For strongly coupled theories one can use bootstrap to place bounds
on the three-point coefficients with n = 1.
This is the worst possible situation for us. And still…
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Large charge and supersymmetry

Comparison with bootstrap
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Large charge and supersymmetry

Comparison with bootstrap
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Large charge and supersymmetry

Comparison with bootstrap
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Conclusions

In conclusion

• With the large-charge approach we can study strongly-coupled
systems perturbatively.

• Select a sector and we write a controllable effective theory.
• The strongly-coupled physics is (for the most part) subsumed in a

semiclassical state.
• Compute the CFT data.
• Very good agreement with lattice (supersymmetry, large N).
• Precise and testable predictions.
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