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Introduction Today

Who’s who

S. Reffert, M. Watanabe (AEC Bern) [O. Loukas];
L. Alvarez Gaumé (CERN and SCGP);
F. Sannino (CP3-Origins)
D. Banerjee (DESY);
S. Chandrasekharan (Duke);
S. Hellerman (IPMU).
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Introduction Today

Why are we here? Conformal field theories are hard

Most conformal field theories (CFTs) lack nice limits
where they become simple and solvable.

No parameter of the theory can be
dialed to a simplifying limit.
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Introduction Today

Why are we here? Conformal field theories are hard

In presence of a symmetry there can be sectors of the
theory where anomalous dimension and OPE
coefficients simplify.
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Introduction Today

The idea

Study subsectors of the theory with fixed quantum number Q.

In each sector, a large Q is the controlling parameter
in a perturbative expansion.
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Introduction Today

no bootstrap here!

This approach is orthogonal to
bootstrap.
We will use an effective action.
We will access sectors that are
difficult to reach with bootstrap.
(However, arXiv:1710.11161).
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Introduction Today

Concrete results

We consider the O(N) vector model in three dimensions. In the IR it
flows to a conformal fixed point Wilson & Fisher.

We find an explicit formula for the dimension of the lowest primary
at fixed charge:

ΔQ =
c3/2

2
√
π
Q3/2 + 2

√
πc1/2Q1/2 − 0.094+O

(
Q−1/2

)
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Introduction Today

Summary of the results: O(2)
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Introduction Today

Scales

We want to write a Wilsonian effective action.

Choose a cutoff Λ, separate the fields into high and low frequency
φH,φL and do the path integral over the high-frequency part:

eiSΛ(φL)=
∫

DφH eiS(φH,φL)
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Scales

We want to write a Wilsonian effective action.

Choose a cutoff Λ, separate the fields into high and low frequency
φH,φL and do the path integral over the high-frequency part:

eiSΛ(φL)=
∫

DφH eiS(φH,φL)tooh
ard
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Introduction Today

Scales

▶ We look at a finite box of typical length R
▶ The U(1) charge Q fixes a second scale ρ1/2 ∼ Q1/2/R

1
R
≪ Λ≪ ρ1/2 ∼ Q1/2

R
≪ ΛUV

For Λ≪ ρ1/2 the effective action is weakly coupled and under
perturbative control in powers of ρ−1.
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Introduction Today

Wilsonian action

The Wilsonian action is fundamentally useless because it contains
infinite terms.

At best:

▶ a cute qualitative picture;
▶ might allow you to get the anomalies right;
▶ something that helps you organize perturbative calculations, if

your system is already weakly-coupled for some reason;
▶ maybe a convergent expansion in derivatives.

supe
rstit

ion
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Introduction Today

Too good to be true?
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Introduction Today

Too good to be true?

Think of Regge trajectories.
The prediction of the theory is

m2 ∝ J
(
1+O

(
J−1
))

but experimentally everything
works so well at small J that
String Theory was invented.

FIG. 2. The (n, M2)-trajectories for the states a0(10++), a2(12++) and a4(14++) with a) µ2 = 1.38 GeV2 and b) µ2 = 1.10
GeV2; Two variants for the f2(02

++)-trajectories with the slope parameter c) µ2 = 1.38 GeV2 and d) µ2 = 1.10 GeV2. The
f0(00

++)-trajectories for e) real resonance states and f) K-matrix pole states. As in Fig. 1, the open circles stand for states
predicted by the present classification.

5
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Introduction Today

Too good to be true?

The unreasonable effectiveness

of the large charge expansion.
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Introduction Today

Today’s talk

Justify and prove all my claims from first principles, without using
effective field theory.

▶ well-defined asymptotic expansion (in the technical sense)
▶ justify why the expansion works at small charge
▶ compute the coefficients in the effective action in large-N

Use the large-charge expansion together with supersymmetry.

▶ qualitatively different behavior
▶ compute three-point functions
▶ resum the large-charge expansion
▶ see explicitly the next saddle in the partition function
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Introduction Today
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Large N vs. Large Charge

Large N vs. Large Charge
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Large N vs. Large Charge

The model

φ4 model on R ×Σ for 2N fields

S[ϕ] =
1
2

2N

∑
a=1

∫
dtdΣ

(
∂μφa ∂μφa +

R
8
φaφa + u(φaφa)

2
)

Without quadratic term this flows to the wf fixed point in the ir.
We compute the partition function at fixed charge

ZΣ(Q) = Tr
[
e−S[ϕ]δ(Q̂[ϕ]−Q)

]
Via the state/operator correspondence we extract the conformal
dimensions of operators of fixed charge Q on R3:

Δ(Q) = − 1
β

logZS2(Q).
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Large N vs. Large Charge

Fix the charge

We group the φa into N complex fields ϕi. The charge we fix is the
U(1) that rotates all of them together.

Q̂[ϕ] = i
n

∑
i=1

∫
dΣ (ϕ∗

i ϕ̇i − ϕ̇∗
i ϕi).

So

ZΣ(Q) = Tr
[
e−Sδ(Q̂−Q)

]
=
∫ π
−π

dθ
2π

e−iθQ Tr
[
e−S+iθQ̂

]
Since Q̂ depends on the momenta, the integration is not trivial but
well understood.

ZΣ(Q) =
∫ π
−π

dθ
2π

e−iθQ
∫

ϕ(2πβ)=eiθϕ(0)

Dϕi e−S[ϕ]

=
∫ π
−π

dθ
2π

e−iθQ
∫

ϕ(2πβ)=ϕ(0)

Dϕi e−S
θ[ϕ]
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Large N vs. Large Charge

Fix the charge

We group the φa into N complex fields ϕi. The charge we fix is the
U(1) that rotates all of them together.

Q̂[ϕ] = i
n

∑
i=1

∫
dΣ (ϕ∗

i ϕ̇i − ϕ̇∗
i ϕi).

So

ZΣ(Q) = Tr
[
e−Sδ(Q̂−Q)

]
=
∫ π
−π

dθ
2π

e−iθQ Tr
[
e−S+iθQ̂

]
Since Q̂ depends on the momenta, the integration is not trivial but
well understood.

ZΣ(Q) =
∫ π
−π

dθ
2π

e−iθQ
∫

ϕ(2πβ)=eiθϕ(0)

Dϕi e−S[ϕ]

=
∫ π
−π

dθ
2π

e−iθQ
∫

ϕ(2πβ)=ϕ(0)

Dϕi e−S
θ[ϕ]

covariant derivative
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Large N vs. Large Charge

Effective actions

The covariant derivative approach:

Sθ[ϕ] =
N

∑
i=1

∫
dtdΣ

(
(Dμϕi)

∗(Dμϕi) +
R
8
ϕ∗
i ϕi + 2u(ϕ∗

i ϕi)
2
)

where{
D0ϕ = ∂0ϕ+ iθβϕ
Diϕ = ∂iϕ

Standard construction: introduce a Lagrange multiplier λ and
integrate out all the fields but one (which we call σ) [Zinn–Justin].
Effective action

Sθ[σ,λ] = −(N− 1)Tr
[

log
(
−DμDμ +λ+

R
8

)]
+
∫

dtdΣ

(
(Dμσ)∗(Dμσ) + (

R
8
+λ)σ∗σ+

λ2

4u

)
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Large N vs. Large Charge

Effective actions

The covariant derivative approach:

Sθ[ϕ] =
N

∑
i=1

∫
dtdΣ

(
(Dμϕi)

∗(Dμϕi) +
R
8
ϕ∗
i ϕi + 2u(ϕ∗

i ϕi)
2
)

where{
D0ϕ = ∂0ϕ+ iθβϕ
Diϕ = ∂iϕ

Standard construction: introduce a Lagrange multiplier λ and
integrate out all the fields but one (which we call σ) [Zinn–Justin].
Effective action

Sθ[σ,λ] = −(N− 1)Tr
[

log
(
−DμDμ +λ+

R
8

)]
+
∫

dtdΣ

(
(Dμσ)∗(Dμσ) + (

R
8
+λ)σ∗σ+

λ2

4u

)
irrelevant
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Large N vs. Large Charge

Integrate all but one
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Large N vs. Large Charge

Saddle point

We expand the fields λ and σ around a constant vacuum
expectation value (vev) to minimize over

λ = m2 +
λ̂

(N− 1)1/2 σ = v+ σ̂

and we approximate the integral over θ with a saddle point.
(Generalized) gap equations:

dS
dm

= 2Vβmv2 + (N− 1)
∂

∂m
Tr
[
log
(
−DμDμ +m2

)]
= 0

dS
dθ

= iQ+ 2V
θ
β
v2 + (N− 1)

∂

∂θ
Tr
[
log
(
−DμDμ +m2

)]
= 0

dS
dv

= Vβ

(
m2 +

θ2

β2

)
v = 0
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Large N vs. Large Charge

Zeta functions

In the limit β→ ∞ (zero temperature), we regularize with a zeta
function ζ(s|Σ,m) = ∑p(E(p)2 +m2)−s:
The gap equations become

Vv2 +
N− 1

2
ζ(1/2|Σ,m) = 0,

− iQ+
2V
β
θv2 = 0,

2Vβ

(
m2 +

θ2

β2

)
v = 0,

For finite Q we need necessarily v ̸= 0 and then θ = imβ. So we get

mζ(1/2|Σ,m) = − Q
N− 1
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Large N vs. Large Charge

Zeta functions

In the limit β→ ∞ (zero temperature), we regularize with a zeta
function ζ(s|Σ,m) = ∑p(E(p)2 +m2)−s:
The gap equations become

Vv2 +
N− 1

2
ζ(1/2|Σ,m) = 0,

− iQ+
2V
β
θv2 = 0,

2Vβ

(
m2 +

θ2

β2

)
v = 0,

For finite Q we need necessarily v ̸= 0 and then θ = imβ. So we get

mζ(1/2|Σ,m) = − Q
N− 1

natural parameter
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Large N vs. Large Charge

Large N

We have not used at all the large N condition. Now it’s the moment.
The action for the fluctuations is an infinite sum of non-local terms

Sθ[σ̂, λ̂] = −(N− 1)Tr
[
log
(
−DμDμ +m2

)]
+
∫

dtdΣ
(
(Dμσ̂)∗(Dμσ̂) + (m2 + λ̂)σ̂∗σ̂+

λ̂v(σ̂+ σ̂∗)

(N− 1)1/2

)
+

+
1
2

∫
dx1 dx2 λ̂(x1)λ̂(x2)D(x1 − x2)2+

+
∞

∑
n=3

1
n(N− 1)n/2−1

∫
dx1 . . . dxn

λ̂(x1)λ̂(x2) . . . λ̂(xn)P(x1, x2, . . . , xn)

When N is large we have a natural hierarchy
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Large N vs. Large Charge

Order N

At leading order in N, the free energy is

F(Q) = − 1
β

(
iθQ+N

∂

∂s
Γ(s− 1/2)
2
√
πΓ(s)

βζ(s− 1/2|Σ,m)

∣∣∣∣
s=0

)
Using the gap equations

F(Q) = mQ+Nζ(−1/2|Σ,m)

For Σ = S2:

F(Q) =
N
√
2

3

(
Q
N

)3/2

+
N

3
√
2

(
Q
N

)1/2

− 7N

180
√
2

(
Q
N

)−1/2

+ . . .
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Large N vs. Large Charge

Order N

FS2(Q) =
4N
3

(
Q
2N

)3/2

+
N
3

(
Q
2N

)1/2

− 7N
360

(
Q
2N

)−1/2

− 71N
90720

(
Q
2N

)−3/2

+O
(
e−

√
Q/(2N)

)
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3

(
Q
2N
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(
Q
2N
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(
Q
2N
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Order N
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3
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Q
2N
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Q
2N
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√
Q/(2N)

)

1/Q
expansion
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Large N vs. Large Charge

Order N
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3
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Q
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Q
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Large N vs. Large Charge

Order N

FS2(Q) =
4N
3

(
Q
2N

)3/2

+
N
3

(
Q
2N

)1/2

− 7N
360

(
Q
2N

)−1/2

− 71N
90720

(
Q
2N

)−3/2

+O
(
e−

√
Q/(2N)

)

asymptotic expansion

Q3/2

Q

1

Q

1
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1
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1
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Large N vs. Large Charge

Order N0

The order N0 terms are

Sθ[σ̂, λ̂] =
∫

dtdΣ
(
(Dμσ̂)∗(Dμσ̂) + (m2 + λ̂)σ̂∗σ̂

+
λ̂v(σ̂+ σ̂∗)

(N− 1)1/2

)
+

1
2

∫
dx1 dx2 λ̂(x1)λ̂(x2)D(x1 − x2)2

where D(x− y) is the propagator (DμDμ +m2)−1.
At low energies we can approximate the non-local term as∫

dtdΣ λ̂(x)2ζ(2|θ,Σ,m) ≈ V
2m

∫
dtdΣ λ̂(x)2

and we can integrate λ̂ out.
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Large N vs. Large Charge

Order N0

The inverse propagator for σ is(
1/2(ω2 + p2 + 4m2) mω

−mω 1/2(ω2 + p2)

)
It describes a massive mode and a massless mode with dispersion

ω2 +
1
2
p2 + . . . = 0 ω2 + 8m2 +

3
2
p2 + . . . = 0

This is the conformal Goldstone that we have seen in the EFT.
Its contribution to the partition function is

EG =
1
2

1√
2
ζ(1/2|S2) = −0.0937 . . .

This is universal. Does not depend on N or Q.
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Large N vs. Large Charge

Order N0

The inverse propagator for σ is(
1/2(ω2 + p2 + 4m2) mω

−mω 1/2(ω2 + p2)

)
It describes a massive mode and a massless mode with dispersion

ω2 +
1
2
p2 + . . . = 0 ω2 + 8m2 +

3
2
p2 + . . . = 0

This is the conformal Goldstone that we have seen in the EFT.
Its contribution to the partition function is

EG =
1
2

1√
2
ζ(1/2|S2) = −0.0937 . . .

This is universal. Does not depend on N or Q.

speedof sound
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Large N vs. Large Charge

Higher orders

There are infinite non-local terms

Snl =
∞

∑
n=3

1
n(N− 1)n/2−1

∫
dx1 . . . dxn λ̂(x1) . . . λ̂(xn)P(x1, . . . , xn)

At low energy they are approximated by

Snl =
∞

∑
n=3

1
n(N− 1)n/2−1

∫
dx λ̂(x)nC′

n

There is only one scale, the charge density ρ = Q/V. We must have

C′
n = ρ

3/2−nCn

So

Snl = Q3/2
∞

∑
n=3

Cn

n(N− 1)n/2−1

∫
dx λ̄(x)n

Infinite corrections of order Q3/2 (and following), controlled by 1/N.
Domenico Orlando Large charge: advanced applications



Large N vs. Large Charge

Higher orders

There are infinite non-local terms

Snl =
∞

∑
n=3

1
n(N− 1)n/2−1

∫
dx1 . . . dxn λ̂(x1) . . . λ̂(xn)P(x1, . . . , xn)

At low energy they are approximated by

Snl =
∞

∑
n=3

1
n(N− 1)n/2−1

∫
dx λ̂(x)nC′

n

There is only one scale, the charge density ρ = Q/V. We must have

C′
n = ρ

3/2−nCn

So

Snl = Q3/2
∞

∑
n=3

Cn

n(N− 1)n/2−1

∫
dx λ̄(x)n

Infinite corrections of order Q3/2 (and following), controlled by 1/N.

dimensionless

Domenico Orlando Large charge: advanced applications



Large N vs. Large Charge

Higher orders

There are infinite non-local terms

Snl =
∞

∑
n=3

1
n(N− 1)n/2−1

∫
dx1 . . . dxn λ̂(x1) . . . λ̂(xn)P(x1, . . . , xn)

At low energy they are approximated by

Snl =
∞

∑
n=3

1
n(N− 1)n/2−1

∫
dx λ̂(x)nC′

n

There is only one scale, the charge density ρ = Q/V. We must have

C′
n = ρ

3/2−nCn

So

Snl = Q3/2
∞

∑
n=3

Cn

n(N− 1)n/2−1

∫
dx λ̄(x)n

Infinite corrections of order Q3/2 (and following), controlled by 1/N.

dimensionless

Domenico Orlando Large charge: advanced applications



Large N vs. Large Charge

Was it worth it?
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Large N vs. Large Charge

Final result

Δ(Q) =

(
4N
3

+O(1)
)(

Q
2N

)3/2

+

(
N
3
+O(1)

)(
Q
2N

)1/2

+ . . .
− 0.0937 . . .

lattice leading N error

O(2)
c3/2 0.337 0.471 40%
c1/2 0.266 0.236 10%

O(4)
c3/2 0.301 0.333 10%
c1/2 0.294 0.333 13%

Domenico Orlando Large charge: advanced applications



Large N vs. Large Charge

Final result

Δ(Q) =

(
4N
3

+O(1)
)(

Q
2N

)3/2

+

(
N
3
+O(1)

)(
Q
2N

)1/2

+ . . .
− 0.0937 . . .

nocorrections

lattice leading N error

O(2)
c3/2 0.337 0.471 40%
c1/2 0.266 0.236 10%

O(4)
c3/2 0.301 0.333 10%
c1/2 0.294 0.333 13%

Domenico Orlando Large charge: advanced applications



Large N vs. Large Charge

Final result

Δ(Q) =

(
4N
3

+O(1)
)(

Q
2N

)3/2

+

(
N
3
+O(1)

)(
Q
2N

)1/2

+ . . .
− 0.0937 . . .

lattice leading N error

O(2)
c3/2 0.337 0.471 40%
c1/2 0.266 0.236 10%

O(4)
c3/2 0.301 0.333 10%
c1/2 0.294 0.333 13%

Domenico Orlando Large charge: advanced applications



Large charge and supersymmetry

Large charge and supersymmetry

Domenico Orlando Large charge: advanced applications



Large charge and supersymmetry

And Now for Something Completely Different

All the models that you have seen have something in common:
isolated vacuum. No moduli space.
What happens when there is a flat direction?

Many known examples of (non-Lagrangian) N ≥ 2 SCFT in four
dimensions.
Coulomb branch with a dimension-one moduli space: all the physics
is encoded in a single operator Φ and every chiral operator is just Φn.
We will write an effective action for Φ.

Domenico Orlando Large charge: advanced applications



Large charge and supersymmetry

Effective action

We have a single vector multiplet. The kinetic term is just

Lk =
∫

d4θΦ2 + c.c. = |∂φ|2 + fermions+ gauge fields

There will also be a WZ term for the Weyl symmetry and U(1) charge.
Because of N = 2, everything else is a D-term and does not
contribute to protected quantities.

LEFT = LK +αLWZ

The coefficient α fixes the a-anomaly of the EFT. It has to match the
anomaly in the UV.
Claim: at large R-charge this action is all you need for any N = 2
theory (with one-dimensional moduli space).

from
anomaly
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Large charge and supersymmetry

Observables

Three-point function of the Coulomb branch operators⟨
Φn1(x1)Φn2(x2)Φ̄

n1+n2(x3)
⟩
=

Cn1,n2,n1+n2

|x1 − x3|2n1D|x2 − x3|2n2D

The OPE of Φ with itself is regular, so we can set x2 = x1 and the
three-point function is actually a two-point function.

Cn′,n−n′,n = |x1 − x2|2nD
⟨
Φn(x1)Φ̄

n(x2)
⟩
= eqn−q0

Q = nD is the controlling parameter (it’s the R-charge)
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Large charge and supersymmetry

Two-point function

⟨
Φn(x1)Φ̄

n(x2)
⟩
=
∫
Dφφn(x1)φ̄

n(x2)e−Sk

We can just pull the sources in the action and minimize

Sk + Ssources ∝ k0 +
∫

d4x
[

∂μφ ∂μφ̄

−Q logφδ(x− x1)−Q log φ̄δ(x− x2)
]

At the minimum:

S = k0 + k1Q−Q logQ+ 2Q log |x1 − x2|+O
(
Q0
)

so

qn = k0 + k1Q+
(
Q+ 1

2

)
log(Q) +O

(
Q0
)
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EFTparameters
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Large charge and supersymmetry

Two-point function: tree level

Adding the WZ term gives another contribution

qn = k1Q+ k0 +Q log(Q) +
(
α+ 1

2

)
log(Q) +O

(
Q0
)

This is the tree-level result.

Corrections from quantum fluctuations in the path integral.
No other tree-level terms.
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Large charge and supersymmetry

Two-point function: quantum corrections

1/Q is the loop-counting parameter because we are expanding
around a VEV that depends on Q.
Sum of a ground state piece and a series in 1/Q.

qn = k0 + k1Q+Q log(Q) +
(
α+ 1

2

)
log(Q) +

∞

∑
m=1

km(α)

Qm

Compute order-by-order

k

+

k

+

k

+

k

+

k

k1(α) =
1
2

(
α2 +α+

1
6

)
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Large charge and supersymmetry

Supersymmetry to the rescue

There is a better way.
The qn satisfy a Toda lattice equation arXiv:0910.4963

∂τ∂τ̄qn = eqn+1−qn − eqn−qn−1

This is integrable, but it’s hard to find explicit solutions.
Unless…

…we use the form that follows from the existence of the asymptotic
expansion

qn = k0(τ, τ̄) +Qf(τ, τ̄) +Q log(Q)

+
(
α+ 1

2

)
log(Q) +

∞

∑
m=1

km(α)

Qm
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Large charge and supersymmetry

Recursion relation

We can actually solve the recursion relation, using the value of k1(α)
found at one loop.

qn = k0(τ, τ̄) +Qf(τ, τ̄) + log(Γ(2n+α+ 1))

The log term is universal, only depends on α.

We have completely resummed the 1/Q expansion.
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Large charge and supersymmetry

Comparison with localization

How well does this work?
For the special case of SU(2) SQCD with Nf = 4 we can compare with
localization. arXiv:1602.05971
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Large charge and supersymmetry

A semi-empirical instanton
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Large charge and supersymmetry

A semi-empirical instanton

We can do better.
We have resummed the 1/Q expansion around one vacuum.
Exponential corrections coming from the next saddle in the path
integral.
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−b
√
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Large charge and supersymmetry

Comparison with localization

Once we add the first exponential correction
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Large charge and supersymmetry

Comparison with localization

Once we add the first exponential correction (fixed τ = 6)
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Large charge and supersymmetry

Comparison with bootstrap

For strongly coupled theories one can use bootstrap to place bounds
on the three-point coefficients with n = 1.
This is the worst possible situation for us. And still…
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Comparison with bootstrap
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Large charge and supersymmetry

Comparison with bootstrap
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Large charge and supersymmetry

Comparison with bootstrap
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Conclusions

Conclusions

With the large-charge approach we can access strongly coupled
theories.

The predictions from the EFT are verified when other methods are
available (lattice, large N, localization, bootstrap).

There are different “large-charge universality classes”.

For SCFT we can use supersymmetry to resum the large-charge
perturbation theory and have a glimpse of what lies beyond the
expansion.
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