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Why are we here? Conformal field theories

critical phenomena
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Why are we here? Conformal field theories are hard

Most conformal field theories (CFTs) lack nice limits where they
become simple and solvable.
No parameter of the theory can be dialed to a simplifying limit.

In presence of a symmetry there can be sectors of the
theory where anomalous dimension and OPE
coefficients simplify.
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The idea

/ (/ v

Study subsectors of the theory with fixed quantum number Q.

OOT

In each sector, a large Qis the controlling parameter
in a perturbative expansion.
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no bootstrap here!

This approach is
orthogonal to
bootstrap.

We will use an effective
action.

We will access sectors
that are difficult to reach
with bootstrap.

But see [arXiv:1710.11161]




Concrete results

We consider the O(N) vector model in three dimensions. In the IR it
flows to a conformal fixed point [Wilson & Fisher].

We find an explicit formula for the dimension of the lowest primary
at fixed charge:

G372 ~3/2 1/2 —1/2
Bo= 5220 +2y/mei ,Q 0.094+(9(Q )
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Summary of the results: O(2)
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Summary of the results: O(N)
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[Hasenbusch and Vicari]

Domenico Orlando



Scales

We want to write a Wilsonian effective action.

Domenico Orlando



Scales

We want to write a Wilsonian effective action.

Domenico Orlando



Scales

» We look at a finite box of typical length R
» The U(1) charge Q fixes a second scale 0'/? ~ Q'/2/R

1 Q&
—R<</\<<p1/2~T<</\uv

For A < p'/2 the effective action is weakly coupled and under

perturbative control in powers of o ~".
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The O(N) model

The UV Lagrangian of the O(N) vector model is of the form
L =0, 8°0" 67— g (670°)’,
Wilson and Fisher showed that this flows to a conformal IR fixed point.

UV theory RGflow 1R conformal fixed point.

The idea is to make use of this fact to write an effective Wilsonian
action for this universality class.
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Wilsonian action

The Wilsonian action is fundamentally useless because it contains
infinite terms.

At best:
a cute qualitative picture;

v

v

might allow you to get the anomalies right;

something that helps you organize perturbative calculations, if
your system is already weakly-coupled for some reason;

v

» maybe a convergent expansion in derivatives.



Wilsonian action

The Wilsonian action is fundamentally uselesst5ecause i\ contains

infinite terms.

At best:
>
>

> ations, if

» maybe a tonvergent expansion in derivatives

Domenico Orlando
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Approximate scale invariance
Consider the O(2) universality class.

The order parameter is a complex number ¢ = ae
Give a large vev to a:

ibx_

AL a® < g

In this limit the Lagrangian is (approximately) scale-invariant with
corrections ~ A /a.

The IR effective Wilsonian action must be

1 b’ R Ag

.,%Rzé(aua)z-l-?az(aux)z—%a 52
+ (higher derivative terms).

where R is the scalar curvature, and b and A are numerical constants.
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. xrol .
where R is the scalar curvat NBBWPD akd A are numerical constants.



 Introduction —— Effective action from classical scale invariance . Quantum analysis -
Approximate scale invariance

The charge density is simply
0 LR
o X

= b2a?

and using the equations of motion (eom) a* ~ b?/ A x? we find that
the total on shell charge is

Q~ 4 R2bV A"

so that the condition A < a? < g2 on the scales becomes (as
promised)

1 Q1/2 5

— A =

P AL <y

which is consistent if the charge is large
a>1.
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Too good to be true?
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Too good to be true?

Think of Regge trajectories.
The prediction of the theory is

m? o J(14+0(s7))

M?, GeV?

but experimentally everything
works so well at small J that
String Theory was invented.
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RG analysis

Now | have to justify my claims:

>

Show that the classical solution is precisely of the kind found in
the previous slide.

See how the fluctuations on top of the classical solutions are
described by Goldstone modes.

Show that the higher order terms are suppressed in 1/Q for any
value of the couplings b and A.

Derive the formula for the conformal dimensions.
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Abelian global symmetry at fixed charge

Consider a classical system described by Hamiltonian H with a
conserved Abelian global symmetry:

{H,Q} =0.
we impose the first-class constraint

Qz/pdx:azconst.

and the corresponding gauge transformation ¢ . f= {f, € Q}.
Introduce the canonical conjugate x to the density o

{x,Q}=1, sothat d.x = ¢,

and assume all the other variables (p;, gi) to be gauge invariant.



Abelian global symmetry at fixed charge
For concreteness, consider a natural Hamiltonian system:

N
%Z Q)Pk+2k29/< q)(Vaw)” + V(q).
= 0

We want to find the ground state of this system.
The Hamiltonian is a sum of positive terms, we minimize them
separately.

Because of the constraint, o # 0, but we are free to set
Vg=0, Vx=0, pi=0 i=1,...,N.

Since nothing depends on the position anymore, the constraint
becomes

/p dx=vol.x p = Q.
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Abelian global symmetry at fixed charge

The remaining eom are

pi = O/
qi - O/
¥ =fo(qi)p.

They are solved by
Pi:O; q:':(_?i(b), X:M(/_O)t;
where g;and u () are constants.

This is the generalization of the classical solution we found in the
introduction,

a40<b )'(0<7o1/2
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Variational description

We want to find a state v that minimizes
(MHIY

under the constraints
(vVlv) =1 and (v|p|v)=h.

We introduce the Lagrange multipliers E, m and minimize
(VIH—Ey —mp]v).

The solution is

(H=Ey—mp)|v) =0.



Variational description

To reproduce the classical solution
Mx) = u,
where u is the value found earlier. Now
Mxv) = (vl HY) = m L, o]1),
and since x, p are canonically conjugate, we obtain
m= u.
The quantum Hamiltonian is given by
H=H-—up—E.
u is now a fixed chemical potential. The vacuum satisfies H |v) = 0.
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Goldstones

The chemical potential breaks explicitly
the symmetry of Hfrom Gto G’ C G

H=H—-up.

The ground state |v) breaks spontaneously to G” C G'.
Goldstone tells us: dim(G'/G"”) low energy massless DOF.
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Goldstones

The chemical potential breaks explicitly
the symmetry of Hfrom Gto G' C G

H=H—-up.

The ground state |v) breaks spontaneously to G” C G'.
Goldstone tells us: dim(G'/G"”) low energy massless DOF.

AWe have singled out the time. The system is non-relativistic.

¢ * ¢ * $ * $ * 4) * antiferromagnet w « p
@ @ @ $ $ $ $ $ 4> 4> ferromagnet w o p? (count double)
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A classical vector O(2n) model

Consider the Lagrangian of a O(2n) vector model on R x <

D%:lauqsaau(ba_%v((ﬁa(ba)/ a:1l"‘/2nl
We introduce complex variables
1=~ (¢1+i62)
1 NG 1 2) s

so the O(2)" C O(2n) generators act as rotations:
{0i,€;Q}=c¢€i6j0; (no sum).
We impose the conditions

/ dvol p;=Q;=Vx p;,
b3

where the p; are fixed.
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Ground state

Surprise! The homogeneous ground state solution is
0= A"t

where A; and u depend on the fixed charges p;.
The phase u is the same for all fields, even if all the charges p; are
different.

We are really fixing only one O(2) charge — the values of o tell us
how this is embedded in the maximal O(2)" torus.

We might as well rotate the solution to

o= A i=1,...,n—1
(pn:Aiemt



The classical solution

In the IR the theory becomes conformal (Wilson—Fisher).
The Lagrangian is approximately scale invariant and the potential
must have the form

V(o) = el ]2+ Sl 015
16 3

The classical ground state at fixed charge has energy

Es(Q) = 220¥2+ I2rVVaQ? + 0(Q72),

VvV

» there are two universal parameters: c¢3,» and ¢y 2 (viz. b and A)
» the result depends on the manifold = only via the volume V and
the scalar curvature R
How do the higher derivatives and quantum corrections change this
result? How controlled is our approximation?



How many Goldstones?

Using the variational approach, the quantum Hamiltonian is
H=H—-u(p1+ 024+ 04),

This breaks the O(2n) symmetry explicitly to U(n). The vacuum
(i) = A,

breaks U(n) spontaneously to U(n —1).
The dimension of the coset is

dim G/H=dimU(n) —dimU(n—1) = 2n— 1.

The system is non-relativistic. This is only an upper bound on the
number of Goldstones.
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How many Goldstones?

Expand around the classical solution.

On = 1 eiut+i¢2m/v(v+ a)Zn—'l)

{(p[:eiut(bi, i:1,...,n—1
V2

The (unbroken) U(n — 1) symmetry is then realized as &; — U,.j ®j.
The second order Lagrangian becomes:

L =Y (0—iu)of@t+in)oi—) VoiVo,
i=1 i=1
22

n
2 2 .2
-Y uoloi— ued5,_ 1,
=1 1-¢c

where u? = V/(v?) (eom) and ¢ < 1is a dimensionless parameter.



How many Goldstones?
Expand around the classical solution.

{@i:ei“t(bi, i:1,...,n—1

On = \/Lf e’ut+l¢2”/v(v+ ¢2n—'|)

where u? = V/(v?) (eom) and ¢ < 1is a dimensionless parameter.
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How many Goldstones?

Expanding for large u (i.e. for large p) we compute the inverse
propagator and the dispersion relations.



MC!a:sicellons!yi-RiGo'cstonesiEanon ca [olshiizationConiormallcimension M Matbmoo BTl JIConcis(on -1
How many Goldstones?




How many Goldstones?

Expanding for large u (i.e. for large p) we compute the inverse
propagator and the dispersion relations.

The massless modes are:

w?:c2p2+(1_4(:22)p4+(’)(u_4) one time
o o beoebebedd

w%,:ruz—w—i—(?(u*é) n—1times
EXRXEEERX,

We have n — 1 non-relativistic Goldstones w « p? and one relativistic
one w o p. The non-relativistic ones are suppressed at large p.
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How many Goldstones?

Expanding for large u (i.e. for large p) we compute the inverse
propagator and the dispersion relations.

The massless modes are:

w§:c2p2+(1_4(:22)p4+(’)(u_4> one time
o o beoebebedd
w? :———4—1—0(;176) n—1times

Tt B EETEETERE

We have n — 1 non-relativistic Goldstones w « p? and one relativistic
one w o p. The non-relativistic ones are suppressed at large p.

Non-relativistic ones “count double” [Nielsen and Chadha] [Murayama and
Watanabe] and we have 2 x (n—1)+1=2n—1=dim G/H.
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Canonical quantization of the non-Abelian sector

The quadratic Hamiltonian in the 069664683 sector
H=nini+VoiVoi+ueolo—u(nei—niol).

Go to Fourier space and expand in terms of canonical operators:

L__(ai(p) +bI(~p)),

oi(p) = 75(o)

The Hamiltonian is diagonalized by the choice @? = p? + u?:

Hi(p) = (\/p2 +u2 - u>af(p)af(p)
+ (\/p2 +u2+ u)b?(p)bi(p)-

We have broken Lorentz invariance, and the symmetry between
particles and antiparticles.

2
For u > 1, ais a Goldstone with w ~ f—u and b is massive.
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Canonical quantization of the non-Abelian sector

The quadratic Hamiltonian in the 069664683 sector
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Go to Fourier space and expand in terms of canonical operators:

L__(ai(p) +bI(~p)),

oi(p) = 75(o)

The Hamiltonian is diagonalized by the choice @? = p? + u?:

Hi(p) = (\/p2 +u2 - u>a,~+(p)af(p)
Qo

+ ( p?+ u?+
We have broken Lorentz invariance, and the symmetry betWéen
particles and antiparticles.

2
For u > 1, ais a Goldstone with w ~ f—u and b is massive.
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Non-relativistic Goldstones

Write the Lagrangian
L= (0—in)of@t+in)oi— u’oioi—VoiVo,.
If u > 9y, this is a massless Schroédinger particle:
Li=iu(ejei—o;oi)—VoiVo;,

The term u (o1 + -+ o) is a Berry's phase and we get only one
classical Goldstone particle instead of two (ferromagnet).

@ and @* are canonically conjugate to each other. The Goldstones
“count double”.
Non-relativistic Goldstones do not contribute to the Casimir energy.
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The Abelian sector

The Hamiltonianforthe $ ¢ ¢4 ¢4 ¢ ¢ ¢ socior (where the mass
term appears) is

1
Ho = 5| W30t + 030+ (V #20-1)" + (V 6.20)°

oy (1+3c2

T—a $5, 1+ ¢2n) — u(man_1 Pon— 77-2n¢)2n7'|)] .

Also this can be diagonalized in the oscillators:

Hy = cpab(pan(p) + 2oz Bl(p)bn(p) +O( 5 )

We see that a is a Goldstone with w = cp and b is massive.



~ Classical analysis  Goldstones  Canonical quantization  Conformal dimensions  Matrix models  Dualities  Conclusions
The Abelian sector

The Hamiltonianforthe $ ¢ ¢4 ¢4 ¢ ¢ ¢ socior (where the mass
term appears) is

1
Ho = 5|31 + W30+ (V62017 + (V 820

ey (1+3c2

T—a $5, 1+ ¢2n) — u(man_1 Pon— 7T2n¢2n7'|)] .

Also this can be diagonalized in the oscillators:

We see that a is a Goldstone with w = cp and b is massive.



~ Classical analysis  Goldstones  Canonical quantization  Conformal dimensions  Matrix models  Dualities  Conclusions
The Abelian sector

The Hamiltonianforthe $ ¢ ¢4 ¢4 ¢ ¢ ¢ socior (where the mass
term appears) is

1
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The Abelian sector

The Hamiltonianforthe $ ¢ ¢4 ¢4 ¢ ¢ ¢ socior (where the mass
term appears) is

1
Hn = z [”%nf1 + n%n + (v¢2n—1

Hy = cpab(Plan(p) + 2=z Bl(P)bn(p) +O( 5 )

We see that a is a Goldstone with w = cp and b is massive.
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Suppression of the interactions

We have assumed that the quadratic part of the Hamiltonian is the
most important and that the rest can be treated as small.
Expand the potential:

2).'“2'3
V(g) = V() + u? A2g 0+ u QL PLPE+ ...
ZAH Im
+U 2<pl‘|"'(piml

where the A are dimensionless constants and of order o).
To diagonalize Hy, @;is of order O(u~"/?) so

UZ A i.eim A i.eeim
ym—2m/2 _ ym-2,m/2-2"

v has the dimensions of a field, [v] = d/2 — 1. Overall we have

Ai1~~-im Ai1...im /‘li1---im
L —drm/2d-T) | p(m/2-d/[d-1) _ pOn Qm>0.
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The leading effective action

Upshot? The large-charge dynamics is controlled by a single
relativistic Goldstone.

» We can integrate out all the massive modes

» The non-relativistic Goldstones are controlled by negative
powers of Q

We can write an effective action for the controlling mode

5= [ dxyglksaloxl +kyaRloxl] + 0(7?)

where ||v]| = (v, v*)'/2.

This action has to be expanded around x = ut.



The point

Let me stop for a moment.

We found:

» A classical solution that in a large-Q expansion starts with Q3/?
and contains only terms with semi-integer powers (no Q°)

» All the interaction terms have negative Q-scaling

> The only term that has Q° scaling is the kinetic term for the
Goldstones

» There is only one relativistic Goldstone field bedededede



The point

» All the positive Q-scaling terms come from the classical solution

» The only QY term comes from the Casimir energy of the

relativistic Goldstone. We only need to compute the & function
on the manifold of choice.

» Everything else is suppressed for large Q.
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Does this work? A small (big) surprise

On atorus = = T?, the prediction is that the energies go like
Ep = =202+ +0(Q)

o is the Casimir energy of our relativistic Goldstone ¢y = —0.504 /L

100F ~ ~ * 1 7" T T g

L B

T
SS
E 10
g
_ILlJ [
~ [ C3/2 = 01235(10) for
the O(2) model.
10
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The point

» We started with a generic O(2n)-invariant model

» Fixing n U(1) charges breaks the symmetry explicitly to U(n). We
have a controlling parameter p.

» The ground state breaks spontaneously to U(n — 1)

» There is one relativistic Goldstone (with c < 1) and n — 1
non-relativistic Goldstones, controlled by @'

» We diagonalize the quantum Hamiltonian

» In the resulting theory, couplings A in the initial model are
suppressed by powers of o~

» In the limit of @ — oo, the system is well described by a single
Goldstone mode.
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Conformal dimensions
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Radial quantization

| have promised to compute the conformal dimensions. Up to this
point | have computed energies. How are these related?

We want to describe a conformal theory, so we can start from flat
space R%nd perform a conformal transformation to R x S9-":

1
ds? =dr2+d0% , = r—2<dr2 +Pdad ),
The initial time coordinate has now become the radius r and the
Hamiltonian is identified with the dilatation operator.

A state with fixed charge and energy E on R; x 9" is mapped to an
operator on R¥ with conformal dimension

A=E.



BRClassicalons) s RG 010 ton =S Saon cs [/ o izatiohigilGontormal[cimensions B Mt oo -BloTa =R Concl - Toh -
Radial quantization

R¢ R x S
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The action

Up to higher-derivative terms the action must be:
S— %/dtdQ (g4 9, 629y 67 — V(6767)],

where the potential becomes now

2n R A

V8789 = 1 (G077 + 5(0°)),
a=1

R is the Ricci scalar R = 2.

Naturalness implies A = O(1), so no standard perturbation theory.

In the limit of large charge, we have a single Goldstone mode and
. —
the quantum corrections are controlled by A /Q" < 1.



Energies

We need just to evaluate the energy of the ground state:

2/11/4_3/2 R - —-—1/2
E0:4”<3b3/zp + g2 +0(p %) ).

The effect of the Goldstone is of order O(Q) and is the one-loop
vacuum energy. One just needs to compute a determinant:

logdet<— ag%vz) = \L@ i(2/+ D/I(1+ 1)

I=0

which is £ -function regularized:

1 1
Er~ —— | — —0.015 ) = —0.094.
°T 22 ( 4 )

This is a universal prediction for our construction.
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Conformal dimensions

We can put it all together

Ao = Ey+ Eg
_ C32 /2_ —1/2
2\/_0 ? 4 2¢1 )9/ Q0 0094+(9< )

This is a prediction for the conformal dimensions at the Wilson—Fisher
point of the O(n) model.

There are two parameters c3,, and ¢y, that depend on the details of

the model.
They can be computed e.g. on the lattice.
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Large charge and the lattice

14 T T T . .
12 C3/2 = 1195(10) R
C/2 = 0075(10)
10 | co = —0.094 1
—~ 87 _
g
(m] 6 L |
4 4
2 L
fit ——
O Il Il Il Il Il
2 4 6 8 10
Q
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Large charge and the lattice
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C/2 = 0075(10)
10 ¢ = —0.094
—~ 87
g
(m] 6 L
4 |
2 r _
MC data —H&—
fit ——
O Il Il Il Il Il
2 4 6 8 10
Q
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Matrix models

We have chosen a global symmetry and a (vector) representation.
What happens when the fields transform i.e. in the adjoint? Is the
physics different?

We can start with Let’s start with

Tr(d, ® 94 ©)—V(d)],

1
S= dtd> |5
Rx = |:2

where ® € Ay_1 and

R
— Tr ©2+4g1 Tr ©° + go(Tr %) + g3 Tr * Tr 2

V(o) = 1

+ 94(TI' q32)3/
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Matrix models

The analysis is quite similar in spirit to the one above but the
large-charge behavior is different [Loukas 1711.07990]

» For N =2 and N = 3 there is just one Goldstone, like in the
O(N) model
» For N > 4 the generic potential leads to a different

symmetry-breaking pattern where homogeneous solutions can
have |[N/2| independent charges.



Matrix models

A U(N) vector model and a U(N) matrix model have the same global
symmetries and are not a priori different in a bootstrap approach.

Our Wilsonian construction tells us that for N > 4 they are different
even before we study their dynamics.

One admits homogeneous solutions with multiple fixed charges, the
other does not.

The large-charge approximation can help in mapping the phase
space.
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Dualities



Large charge and dualities

A favorite approach to strongly coupled theories consists in using
dualities. The idea is to find a weakly-coupled dual description of a
strongly-coupled theory.

The large-quantum-number limit “classicalizes” strongly coupled
theories.

We can hope that in this limit, strong/weak dualities become
classical/classical dualities.



The dual of the O(2) model

The simplest situation where such a duality can be described
concretely is again the O(2) model in three dimensions.

It is known that there exists a dual description in terms of an Abelian
gauge theory.

» The Noether current maps to the monopole current

» The total Noether charge becomes the magnetic flux on the
sphere

» The Noether charge of an operator becomes the monopole
number
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An equivalent action

We have an effective action for the O(2) model at fixed charge

S= /d3x\/§||ax 1.

We want to dualize it to the theory of a two-form.
The trick is to rewrite the action using a field v, = d, x and impose
that dv = 0 with a Lagrange multiplier:

1
S— /dSX\@HVH%EsMpauayvp
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The Abelian theory

3.1
S:/d3x\/§]|v|| +E5uvpauavvp
Integrating out a gives the starting Lagrangian.

Integrating out v gives the Lagrangian for the dual field
fuy =0ya, —dyay:

s= [ &x 3l

An immediate consequence of the form of the action is that the
dimension of the lowest-lying monopole operator scales as the
monopole number to the 3 (for large monopole charge).



Monopoles in three dimensions

Identifying the U(1) current on both sides

fuv o HaXHV |9l € uve9® x,

In fact Weyl-invariance, diffeomorphism covariance, and charge
quantization uniquely determine this relation.

Fixed charge in the O(2) model becomes a background vacuum
expectation value (vev) for the magnetic flux

Q .
<f9¢> —ﬁSll’le



(Large) Spin

Adding vortices to the Abelian action is equivalent to adding spin to
the operators in the O(2) model [Cuomo et al. 1711.02108].

In the large-charge approximation we can keep only the classical
terms (no quantum corrections).

regime A state

0<J<Q? aQ3/? 4 % no vortices
Q2 <J<Q aQ¥?+ ‘F log \/» vortex-antivortex pair
Q< J< Q¥? Q3/2 + 2a 03/2 many vortex-antivortex pairs
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Summary of the results

Very concrete examples where a strongly-coupled CFT is simplified in
a special sector.

O(N) model in three dimensions: in the limit of large U(1) charge Q,
we computed the conformal dimensions in a controlled perturbative

expansion.

We have found an explicit formula for the dimension of the
lowest-energy state:

Ag= C3/203/2 + C1/2O1/2 —0.094



Now what?

» We would like to get a better understanding of the Wilsonian
action. In particular we would like to compute the coefficients
c3/2 and ¢y, from first principles;

» Why does the approach work numerically for small charge?

We have described one example.
We hope our framework is powerful enough to provide insights in

the large-Q behavior of other strongly coupled CFTs which are in
general not tractable with known methods.



Domenico Orlando
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