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Why are we here? Conformal field theories

extrema of the RG flow critical phenomena
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Why are we here? Conformal field theories are hard

Most conformal field theories (CFTs) lack nice limits where they
become simple and solvable.
No parameter of the theory can be dialed to a simplifying limit.

In presence of a symmetry there can be sectors of the
theory where anomalous dimension and OPE
coefficients simplify.
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The idea

Study subsectors of the theory with fixed quantum number Q.

In each sector, a large Q is the controlling parameter
in a perturbative expansion.
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no bootstrap here!

This approach is
orthogonal to
bootstrap.
We will use an effective
action.
We will access sectors
that are difficult to reach
with bootstrap.
But see [arXiv:1710.11161]
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Concrete results

We consider the O(N) vector model in three dimensions. In the IR it
flows to a conformal fixed point [Wilson & Fisher].

We find an explicit formula for the dimension of the lowest primary
at fixed charge:

ΔQ =
c3/2

2
√
π
Q3/2 + 2

√
πc1/2Q1/2 − 0.094+O

(
Q−1/2

)
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Summary of the results: O(2)
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Summary of the results: O(N)
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Scales

We want to write a Wilsonian effective action.

Choose a cutoff Λ, separate the fields into high and low frequency
φH,φL and do the path integral over the high-frequency part:

eiSΛ(φL)=
∫

DφH eiS(φH,φL)
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Scales

▶ We look at a finite box of typical length R
▶ The U(1) charge Q fixes a second scale ρ1/2 ∼ Q1/2/R

1
R
≪ Λ≪ ρ1/2 ∼ Q1/2

R
≪ ΛUV

For Λ≪ ρ1/2 the effective action is weakly coupled and under
perturbative control in powers of ρ−1.
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The O(N) model

The UV Lagrangian of the O(N) vector model is of the form

LUV = ∂μφa∂μφa − g2(φaφa)2,

Wilson and Fisher showed that this flows to a conformal IR fixed point.

UV theory RG flow−−−−→ IR conformal fixed point.

The idea is to make use of this fact to write an effective Wilsonian
action for this universality class.
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Wilsonian action

The Wilsonian action is fundamentally useless because it contains
infinite terms.

At best:

▶ a cute qualitative picture;
▶ might allow you to get the anomalies right;
▶ something that helps you organize perturbative calculations, if

your system is already weakly-coupled for some reason;
▶ maybe a convergent expansion in derivatives.

supe
rstit

ion
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Approximate scale invariance

Consider the O(2) universality class.
The order parameter is a complex number ϕ = aeibχ.
Give a large vev to a:

Λ≪ a2 ≪ g2.

In this limit the Lagrangian is (approximately) scale-invariant with
corrections ∼ Λ/a2.

The IR effective Wilsonian action must be

LIR =
1
2
(∂μa)

2 +
b2

2
a2(∂μχ)2 − R

16
a2 − λ

6
a6

+ (higher derivative terms).

where R is the scalar curvature, and b and λ are numerical constants.

contr
olled
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Approximate scale invariance

The charge density is simply

ρ :=
δLIR

δχ̇
= b2a2χ̇

and using the equations of motion (eom) a4 ∼ b2/λχ̇2 we find that
the total on shell charge is

Q ∼ 4πR2b
√
λa4

so that the condition Λ≪ a2 ≪ g2 on the scales becomes (as
promised)

1
R
≪ Λ≪ Q1/2

R
≪ g2

which is consistent if the charge is large

Q ≫ 1.
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Too good to be true?
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Too good to be true?

Think of Regge trajectories.
The prediction of the theory is

m2 ∝ J
(
1+O

(
J−1
))

but experimentally everything
works so well at small J that
String Theory was invented.

FIG. 2. The (n, M2)-trajectories for the states a0(10++), a2(12++) and a4(14++) with a) µ2 = 1.38 GeV2 and b) µ2 = 1.10
GeV2; Two variants for the f2(02

++)-trajectories with the slope parameter c) µ2 = 1.38 GeV2 and d) µ2 = 1.10 GeV2. The
f0(00

++)-trajectories for e) real resonance states and f) K-matrix pole states. As in Fig. 1, the open circles stand for states
predicted by the present classification.

5
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Too good to be true?

The unreasonable effectiveness

of the large charge expansion.
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RG analysis

Now I have to justify my claims:
▶ Show that the classical solution is precisely of the kind found in

the previous slide.
▶ See how the fluctuations on top of the classical solutions are

described by Goldstone modes.
▶ Show that the higher order terms are suppressed in 1/Q for any

value of the couplings b and λ.
▶ Derive the formula for the conformal dimensions.
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Abelian global symmetry at fixed charge

Consider a classical system described by Hamiltonian H with a
conserved Abelian global symmetry:

{H,Q} = 0 .

we impose the first-class constraint

Q =
∫
ρdx = Q = const .

and the corresponding gauge transformation δεf = {f,εQ}.
Introduce the canonical conjugate χ to the density ρ

{χ,Q} = 1 , so that δεχ = ε ,

and assume all the other variables (pi,qi) to be gauge invariant.
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Abelian global symmetry at fixed charge

For concreteness, consider a natural Hamiltonian system:

H = 1
2

N

∑
k=0

fk(q)p
2
k +

1
2

N

∑
k=0

gk(q)(∇qk)
2 + V(q).

We want to find the ground state of this system.
The Hamiltonian is a sum of positive terms, we minimize them
separately.
Because of the constraint, ρ ̸= 0, but we are free to set

∇qi = 0, ∇χ = 0, pi = 0, i = 1, . . . ,N .

Since nothing depends on the position anymore, the constraint
becomes∫

ρ dx = vol.× ρ̄ = Q .
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Abelian global symmetry at fixed charge

The remaining eom are

ṗi = 0 ,
q̇i = 0 ,
χ̇ = f0(qi)ρ̄ .

They are solved by

pi = 0 , qi = q̄i(ρ̄) , χ = μ(ρ̄)t ,

where q̄i and μ(ρ̄) are constants.

This is the generalization of the classical solution we found in the
introduction,

a4 ∝ ρ̄ χ̇ ∝ ρ̄1/2
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Variational description

We want to find a state v that minimizes

⟨v|H|v⟩

under the constraints

⟨v|v⟩ = 1 and ⟨v|ρ|v⟩ = ρ̄ .

We introduce the Lagrange multipliers E, m and minimize

⟨v|H− E0 −mρ|v⟩ .

The solution is

(H− E0 −mρ) |v⟩ = 0 .
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Variational description

To reproduce the classical solution

⟨v|χ̇|v⟩ = μ ,

where μ is the value found earlier. Now

⟨v|χ̇|v⟩ = ⟨v|[χ,H]|v⟩ = m ⟨v|[χ,ρ]|v⟩ ,

and since χ, ρ are canonically conjugate, we obtain

m = μ .

The quantum Hamiltonian is given by

H = H−μρ− E0 .

μ is now a fixed chemical potential. The vacuum satisfies H |v⟩ = 0.
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Goldstones

The chemical potential breaks explicitly
the symmetry of H from G to G′ ⊂ G

H = H−μρ .

The ground state |v⟩ breaks spontaneously to G′′ ⊂ G′.
Goldstone tells us: dim(G′/G′′) low energy massless DOF.

We have singled out the time. The system is non-relativistic.

antiferromagnet ω ∝ p

ferromagnetω ∝ p2 (count double)

Domenico Orlando The unreasonable effectiveness of the large charge expansion



Classical analysis Goldstones Canonical quantization Conformal dimensions Matrix models Dualities Conclusions

Goldstones

The chemical potential breaks explicitly
the symmetry of H from G to G′ ⊂ G

H = H−μρ .

The ground state |v⟩ breaks spontaneously to G′′ ⊂ G′.
Goldstone tells us: dim(G′/G′′) low energy massless DOF.

We have singled out the time. The system is non-relativistic.

antiferromagnet ω ∝ p

ferromagnetω ∝ p2 (count double)

Domenico Orlando The unreasonable effectiveness of the large charge expansion



Classical analysis Goldstones Canonical quantization Conformal dimensions Matrix models Dualities Conclusions

Goldstones

The chemical potential breaks explicitly
the symmetry of H from G to G′ ⊂ G

H = H−μρ .

The ground state |v⟩ breaks spontaneously to G′′ ⊂ G′.
Goldstone tells us: dim(G′/G′′) low energy massless DOF.

We have singled out the time. The system is non-relativistic.

antiferromagnet ω ∝ p

ferromagnetω ∝ p2 (count double)

Domenico Orlando The unreasonable effectiveness of the large charge expansion



Classical analysis Goldstones Canonical quantization Conformal dimensions Matrix models Dualities Conclusions

A classical vector O(2n) model

Consider the Lagrangian of a O(2n) vector model on R ×Σ

L = 1
2 ∂μφa ∂μφa − 1

2V(φaφa), a = 1, . . . , 2n ,

We introduce complex variables

ϕ1 =
1√
2
(φ1 + iφ2) , . . .

so the O(2)n ⊂ O(2n) generators act as rotations:{
ϕi,εjQj

}
= εjδijϕi (no sum).

We impose the conditions∫
Σ
dvolρi = Qi = V× ρ̄i ,

where the ρ̄i are fixed.
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Ground state

Surprise! The homogeneous ground state solution is

ϕi = Ai eiμt

where Ai and μ depend on the fixed charges ρ̄i.
The phase μ is the same for all fields, even if all the charges ρ̄i are
different.

We are really fixing only one O(2) charge – the values of ρ tell us
how this is embedded in the maximal O(2)n torus.

We might as well rotate the solution to{
ϕi = Ai i = 1, . . . , n− 1

ϕn = Aieiμt
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The classical solution

In the IR the theory becomes conformal (Wilson–Fisher).
The Lagrangian is approximately scale invariant and the potential
must have the form

V(∥φ∥) = R
16

∥φ∥2 + λ
3
∥φ∥6,

The classical ground state at fixed charge has energy

EΣ(Q) =
c3/2√
V
Q3/2 +

c1/2

2
R
√
VQ1/2 +O

(
Q−1/2

)
,

▶ there are two universal parameters: c3/2 and c1/2 (viz. b and λ)
▶ the result depends on the manifold Σ only via the volume V and

the scalar curvature R
How do the higher derivatives and quantum corrections change this
result? How controlled is our approximation?
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How many Goldstones?

Using the variational approach, the quantum Hamiltonian is

H = H−μ(ρ1 +ρ2 + · · ·+ρk) ,

This breaks the O(2n) symmetry explicitly to U(n). The vacuum

⟨ϕi⟩ = Ai,

breaks U(n) spontaneously to U(n− 1).
The dimension of the coset is

dimG/H = dimU(n)− dimU(n− 1) = 2n− 1.

The system is non-relativistic. This is only an upper bound on the
number of Goldstones.
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How many Goldstones?

Expand around the classical solution.{
ϕi = eiμtϕ̂i , i = 1, . . . , n− 1

ϕn =
1√
2
eiμt+iφ̂2n/v(v+ φ̂2n−1

)
The (unbroken) U(n− 1) symmetry is then realized as ϕ̂i 7→ Ũ j

i ϕ̂j.
The second order Lagrangian becomes:

L(2) =
n

∑
i=1

(∂t−iμ)ϕ∗
i (∂t+iμ)ϕi −

n

∑
i=1

∇ϕ∗
i ∇ϕi

−
n

∑
i=1
μ2ϕ∗

i ϕi −
2c2

1− c2
μ2φ2

2n−1 ,

where μ2 = V′(v2) (eom) and c < 1 is a dimensionless parameter.

ask
ford

etail
s
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How many Goldstones?

Expanding for large μ (i.e. for large ρ̄) we compute the inverse
propagator and the dispersion relations.

ask
ford

etail
s

The massless modes are:

ω2
r = c2p2 +

(
1− c2

)3
p4

4μ2 +O
(
μ−4

)
one time

ω2
nr =

p4

4μ2 − p6

8μ4 +O
(
μ−6

)
n− 1 times

We have n− 1 non-relativistic Goldstones ω ∝ p2 and one relativistic
one ω ∝ p. The non-relativistic ones are suppressed at large ρ̄.

Non-relativistic ones “count double” [Nielsen and Chadha] [Murayama and

Watanabe] and we have 2× (n− 1) + 1 = 2n− 1 = dimG/H.

Domenico Orlando The unreasonable effectiveness of the large charge expansion



Classical analysis Goldstones Canonical quantization Conformal dimensions Matrix models Dualities Conclusions

How many Goldstones?

Expanding for large μ (i.e. for large ρ̄) we compute the inverse
propagator and the dispersion relations.

ask
ford

etail
s

The massless modes are:

ω2
r = c2p2 +

(
1− c2

)3
p4

4μ2 +O
(
μ−4

)
one time

ω2
nr =

p4

4μ2 − p6

8μ4 +O
(
μ−6

)
n− 1 times

We have n− 1 non-relativistic Goldstones ω ∝ p2 and one relativistic
one ω ∝ p. The non-relativistic ones are suppressed at large ρ̄.

Non-relativistic ones “count double” [Nielsen and Chadha] [Murayama and

Watanabe] and we have 2× (n− 1) + 1 = 2n− 1 = dimG/H.

Domenico Orlando The unreasonable effectiveness of the large charge expansion



Classical analysis Goldstones Canonical quantization Conformal dimensions Matrix models Dualities Conclusions

How many Goldstones?

Expanding for large μ (i.e. for large ρ̄) we compute the inverse
propagator and the dispersion relations.

ask
ford

etail
s

The massless modes are:

ω2
r = c2p2 +

(
1− c2

)3
p4

4μ2 +O
(
μ−4

)
one time

ω2
nr =

p4

4μ2 − p6

8μ4 +O
(
μ−6

)
n− 1 times

We have n− 1 non-relativistic Goldstones ω ∝ p2 and one relativistic
one ω ∝ p. The non-relativistic ones are suppressed at large ρ̄.

Non-relativistic ones “count double” [Nielsen and Chadha] [Murayama and

Watanabe] and we have 2× (n− 1) + 1 = 2n− 1 = dimG/H.

Domenico Orlando The unreasonable effectiveness of the large charge expansion



Classical analysis Goldstones Canonical quantization Conformal dimensions Matrix models Dualities Conclusions

How many Goldstones?

Expanding for large μ (i.e. for large ρ̄) we compute the inverse
propagator and the dispersion relations.

ask
ford

etail
s

The massless modes are:

ω2
r = c2p2 +

(
1− c2

)3
p4

4μ2 +O
(
μ−4

)
one time

ω2
nr =

p4

4μ2 − p6

8μ4 +O
(
μ−6

)
n− 1 times

We have n− 1 non-relativistic Goldstones ω ∝ p2 and one relativistic
one ω ∝ p. The non-relativistic ones are suppressed at large ρ̄.

Non-relativistic ones “count double” [Nielsen and Chadha] [Murayama and

Watanabe] and we have 2× (n− 1) + 1 = 2n− 1 = dimG/H.
Domenico Orlando The unreasonable effectiveness of the large charge expansion



Classical analysis Goldstones Canonical quantization Conformal dimensions Matrix models Dualities Conclusions

Outline

Classical analysis

Goldstones

Canonical quantization

Conformal dimensions

Matrix models

Dualities

Conclusions

Domenico Orlando The unreasonable effectiveness of the large charge expansion



Classical analysis Goldstones Canonical quantization Conformal dimensions Matrix models Dualities Conclusions

Canonical quantization of the non-Abelian sector

The quadratic Hamiltonian in the sector

Hi = π∗
i πi +∇ϕ∗

i ∇ϕi +μ2ϕ∗
i ϕi −μ(πiϕi −π∗

i ϕ
∗
i ) .

Go to Fourier space and expand in terms of canonical operators:

ϕi(p) =
1√

2ω̃(p)
(ai(p) + b†

i (−p)) ,

The Hamiltonian is diagonalized by the choice ω̃2 = p2 +μ2:

Hi(p) =
(√

p2 +μ2 −μ
)
a†
i (p)ai(p)

+

(√
p2 +μ2 +μ

)
b†
i (p)bi(p) .

We have broken Lorentz invariance, and the symmetry between
particles and antiparticles.

For μ≫ 1, a is a Goldstone with ω ∼ p2

2μ and b is massive.

Domenico Orlando The unreasonable effectiveness of the large charge expansion



Classical analysis Goldstones Canonical quantization Conformal dimensions Matrix models Dualities Conclusions

Canonical quantization of the non-Abelian sector

The quadratic Hamiltonian in the sector

Hi = π∗
i πi +∇ϕ∗

i ∇ϕi +μ2ϕ∗
i ϕi −μ(πiϕi −π∗

i ϕ
∗
i ) .

Go to Fourier space and expand in terms of canonical operators:

ϕi(p) =
1√

2ω̃(p)
(ai(p) + b†

i (−p)) ,

The Hamiltonian is diagonalized by the choice ω̃2 = p2 +μ2:

Hi(p) =
(√

p2 +μ2 −μ
)
a†
i (p)ai(p)

+

(√
p2 +μ2 +μ

)
b†
i (p)bi(p) .

We have broken Lorentz invariance, and the symmetry between
particles and antiparticles.

For μ≫ 1, a is a Goldstone with ω ∼ p2

2μ and b is massive.

Domenico Orlando The unreasonable effectiveness of the large charge expansion



Classical analysis Goldstones Canonical quantization Conformal dimensions Matrix models Dualities Conclusions

Canonical quantization of the non-Abelian sector

The quadratic Hamiltonian in the sector

Hi = π∗
i πi +∇ϕ∗

i ∇ϕi +μ2ϕ∗
i ϕi −μ(πiϕi −π∗

i ϕ
∗
i ) .

Go to Fourier space and expand in terms of canonical operators:

ϕi(p) =
1√

2ω̃(p)
(ai(p) + b†

i (−p)) ,

The Hamiltonian is diagonalized by the choice ω̃2 = p2 +μ2:

Hi(p) =
(√

p2 +μ2 −μ
)
a†
i (p)ai(p)

+

(√
p2 +μ2 +μ

)
b†
i (p)bi(p) .

We have broken Lorentz invariance, and the symmetry between
particles and antiparticles.

For μ≫ 1, a is a Goldstone with ω ∼ p2

2μ and b is massive.

Domenico Orlando The unreasonable effectiveness of the large charge expansion



Classical analysis Goldstones Canonical quantization Conformal dimensions Matrix models Dualities Conclusions

Non-relativistic Goldstones

Write the Lagrangian

Li = (∂t−iμ)ϕ∗
i (∂t+iμ)ϕi −μ2ϕ∗

i ϕi −∇ϕ∗
i ∇ϕi .

If μ≫ ∂t, this is a massless Schrödinger particle:

Li = iμ(ϕ̇∗
i ϕi −ϕ∗

i ϕ̇i)−∇ϕ∗
i ∇ϕi ,

The term μ(ρ1 + · · ·+ρk) is a Berry’s phase and we get only one
classical Goldstone particle instead of two (ferromagnet).

ϕ and ϕ∗ are canonically conjugate to each other. The Goldstones
“count double”.
Non-relativistic Goldstones do not contribute to the Casimir energy.
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The Abelian sector

The Hamiltonian for the sector (where the mass
term appears) is

Hn =
1
2

[
π2

2n−1 +π
2
2n + (∇φ2n−1)

2 + (∇φ2n)
2

+μ2
(
1+ 3c2

1− c2
φ2

2n−1 +φ
2
2n

)
−μ(π2n−1φ2n −π2nφ2n−1)

]
.

Also this can be diagonalized in the oscillators:

Hn = c p a†
n(p)an(p) +

2μ√
1− c2

b†
n(p)bn(p) +O

(
1
μ

)
.

We see that a is a Goldstone with ω = cp and b is massive.

ask
ford

etail
s
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Suppression of the interactions

We have assumed that the quadratic part of the Hamiltonian is the
most important and that the rest can be treated as small.
Expand the potential:

V(φ) = V(v2) +μ2λi1i2ϕi1ϕi2 +μ
2λi1i2i3

v
ϕi1ϕi2ϕi3 + . . .

+μ2λi1...im

vm−2 ϕi1 . . .ϕim ,

where the λ are dimensionless constants and of order O(1).
To diagonalize H2, ϕi is of order O

(
μ−1/2) so

μ2λi1...im

vm−2μm/2 =
λi1...im

vm−2μm/2−2 .

v has the dimensions of a field, [v] = d/2− 1. Overall we have

λi1...im

μ−d+m/2(d−1)
=

λi1...im

ρ̄(m/2−d/(d−1))
=
λi1...im

ρ̄Ωm
Ωm > 0 .

ask
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The leading effective action

Upshot? The large-charge dynamics is controlled by a single
relativistic Goldstone.

▶ We can integrate out all the massive modes
▶ The non-relativistic Goldstones are controlled by negative

powers of Q

We can write an effective action for the controlling mode

S =
∫

d3x
√
g
[
k3/2∥∂χ∥3 + k1/2R∥∂χ∥

]
+O

(
Q−1/2

)
where ∥v∥ = (vμvμ)

1/2.
This action has to be expanded around χ = μt.
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The point

Let me stop for a moment.

We found:
▶ A classical solution that in a large-Q expansion starts with Q3/2

and contains only terms with semi-integer powers (no Q0)
▶ All the interaction terms have negative Q-scaling
▶ The only term that has Q0 scaling is the kinetic term for the

Goldstones
▶ There is only one relativistic Goldstone field
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The point

▶ All the positive Q-scaling terms come from the classical solution
▶ The only Q0 term comes from the Casimir energy of the

relativistic Goldstone. We only need to compute the ζ function
on the manifold of choice.

▶ Everything else is suppressed for large Q.
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Does this work? A small (big) surprise

On a torus Σ = T2, the prediction is that the energies go like

ET2 =
c3/2

L
Q3/2 + cT

2

0 +O
(
Q−1

)
c0 is the Casimir energy of our relativistic Goldstone c0 = −0.504/L

0 5 10 15 20
Q

1

10

100

(E
L (Q

) a
t) (

L/
a)

 

c3/2 = 0.1235(10) for
the O(2) model.
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FIG. 2. The (n, M2)-trajectories for the states a0(10++), a2(12++) and a4(14++) with a) µ2 = 1.38 GeV2 and b) µ2 = 1.10
GeV2; Two variants for the f2(02

++)-trajectories with the slope parameter c) µ2 = 1.38 GeV2 and d) µ2 = 1.10 GeV2. The
f0(00

++)-trajectories for e) real resonance states and f) K-matrix pole states. As in Fig. 1, the open circles stand for states
predicted by the present classification.

5

c3/2 = 0.1235(10) for
the O(2) model.
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The point

▶ We started with a generic O(2n)-invariant model
▶ Fixing n U(1) charges breaks the symmetry explicitly to U(n). We

have a controlling parameter ρ̄.
▶ The ground state breaks spontaneously to U(n− 1)
▶ There is one relativistic Goldstone (with c < 1) and n− 1

non-relativistic Goldstones, controlled by ρ̄−1.
▶ We diagonalize the quantum Hamiltonian
▶ In the resulting theory, couplings λ in the initial model are

suppressed by powers of ρ̄−1.
▶ In the limit of ρ̄→ ∞, the system is well described by a single

Goldstone mode.
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Radial quantization

I have promised to compute the conformal dimensions. Up to this
point I have computed energies. How are these related?

We want to describe a conformal theory, so we can start from flat
space Rdand perform a conformal transformation to R × Sd−1:

ds2 = dτ2 + dΩ2
d−1 =

1
r2

(
dr2 + r2 dΩ2

d−1

)
,

The initial time coordinate has now become the radius r and the
Hamiltonian is identified with the dilatation operator.
A state with fixed charge and energy E on Rt × Sd−1 is mapped to an
operator on Rd with conformal dimension

Δ = E .
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Radial quantization

ΔSd−1

Rd

H

R × Sd−1

Sd−1
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The action

Up to higher-derivative terms the action must be:

S = 1
2

∫
dtdΩ [gμν ∂μφa ∂νφa − V(φaφa)] ,

where the potential becomes now

V(φaφa) =
2n

∑
a=1

(
R
8
(φa)2 +

λ
3
(φa)6

)
,

R is the Ricci scalar R = 2.
Naturalness implies λ = O(1), so no standard perturbation theory.

In the limit of large charge, we have a single Goldstone mode and
the quantum corrections are controlled by λ/Q

# ≪ 1.
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Energies

We need just to evaluate the energy of the ground state:

E0 = 4π

(
2λ1/4

3b3/2 ρ̄
3/2 +

R
16b1/2λ1/4

√
ρ̄+O

(
ρ̄−1/2

))
.

The effect of the Goldstone is of order O
(
Q0
)
and is the one-loop

vacuum energy. One just needs to compute a determinant:

log det
(
− ∂2

0+
1
2
∇2
)
=

1√
2

∞

∑
l=0

(2l+ 1)
√
l(l+ 1)

which is ζ-function regularized:

EG ≃ 1

2
√
2

(
−1

4
− 0.015

)
= −0.094.

This is a universal prediction for our construction.
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Conformal dimensions

We can put it all together

ΔQ = E0 + EG

=
c3/2

2
√
π
Q

3/2
+ 2c1/2

√
πQ1/2 − 0.094+O

(
Q

−1/2
)

.

This is a prediction for the conformal dimensions at the Wilson–Fisher
point of the O(n) model.

There are two parameters c3/2 and c1/2 that depend on the details of
the model.
They can be computed e.g. on the lattice.
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Large charge and the lattice
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Matrix models

We have chosen a global symmetry and a (vector) representation.
What happens when the fields transform i.e. in the adjoint? Is the
physics different?
We can start with Let’s start with

S =
∫

R×Σ
dtdΣ

[
1
2

Tr(∂μΦ ∂μΦ)−V(Φ)

]
,

where Φ ∈ AN−1 and

V(Φ) =
R
16

TrΦ2+g1 TrΦ6 + g2(TrΦ3)2 + g3 TrΦ4 TrΦ2

+ g4(TrΦ2)3,
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Matrix models

The analysis is quite similar in spirit to the one above but the
large-charge behavior is different [Loukas 1711.07990]

▶ For N = 2 and N = 3 there is just one Goldstone, like in the
O(N) model

▶ For N ≥ 4 the generic potential leads to a different
symmetry-breaking pattern where homogeneous solutions can
have ⌊N/2⌋ independent charges.
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Matrix models

A U(N) vector model and a U(N) matrix model have the same global
symmetries and are not a priori different in a bootstrap approach.

Our Wilsonian construction tells us that for N ≥ 4 they are different
even before we study their dynamics.
One admits homogeneous solutions with multiple fixed charges, the
other does not.

The large-charge approximation can help in mapping the phase
space.
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Large charge and dualities

A favorite approach to strongly coupled theories consists in using
dualities. The idea is to find a weakly-coupled dual description of a
strongly-coupled theory.

The large-quantum-number limit “classicalizes” strongly coupled
theories.

We can hope that in this limit, strong/weak dualities become
classical/classical dualities.
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The dual of the O(2) model

The simplest situation where such a duality can be described
concretely is again the O(2) model in three dimensions.
It is known that there exists a dual description in terms of an Abelian
gauge theory.

▶ The Noether current maps to the monopole current
▶ The total Noether charge becomes the magnetic flux on the

sphere
▶ The Noether charge of an operator becomes the monopole

number
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An equivalent action

We have an effective action for the O(2) model at fixed charge

S =
∫

d3x
√
g∥∂χ∥3.

We want to dualize it to the theory of a two-form.
The trick is to rewrite the action using a field vμ = ∂μχ and impose
that dv = 0 with a Lagrange multiplier:

S =
∫

d3x
√
g∥v∥3 + 1

2π
εμνρaμ ∂νvρ
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The Abelian theory

S =
∫

d3x
√
g∥v∥3 + 1

2π
εμνρaμ ∂νvρ

Integrating out a gives the starting Lagrangian.

Integrating out v gives the Lagrangian for the dual field
fμν = ∂μaν − ∂νaμ:

S =
∫

d3x
√
g∥f∥3/2

An immediate consequence of the form of the action is that the
dimension of the lowest-lying monopole operator scales as the
monopole number to the 3

2 (for large monopole charge).
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Monopoles in three dimensions

Identifying the U(1) current on both sides

fμν ∝ ∥∂χ∥
√
|g|εμνσ∂σχ,

In fact Weyl-invariance, diffeomorphism covariance, and charge
quantization uniquely determine this relation.

Fixed charge in the O(2) model becomes a background vacuum
expectation value (vev) for the magnetic flux

⟨fθφ⟩ =
Q
2R

sinθ
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(Large) Spin

Adding vortices to the Abelian action is equivalent to adding spin to
the operators in the O(2) model [Cuomo et al. 1711.02108].

In the large-charge approximation we can keep only the classical
terms (no quantum corrections).

regime Δ state

0 < J < Q1/2 αQ3/2 + J√
2

no vortices

Q1/2 < J < Q αQ3/2 +
√
Q

3α log J√
Q

vortex-antivortex pair

Q < J < Q3/2 αQ3/2 + 1
2α

J2
Q3/2 many vortex-antivortex pairs
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Summary of the results

Very concrete examples where a strongly-coupled CFT is simplified in
a special sector.

O(N) model in three dimensions: in the limit of large U(1) charge Q,
we computed the conformal dimensions in a controlled perturbative
expansion.

We have found an explicit formula for the dimension of the
lowest-energy state:

ΔQ = c3/2Q3/2 + c1/2Q1/2 − 0.094
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Now what?

▶ We would like to get a better understanding of the Wilsonian
action. In particular we would like to compute the coefficients
c3/2 and c1/2 from first principles;

▶ Why does the approach work numerically for small charge?

We have described one example.

We hope our framework is powerful enough to provide insights in
the large–Q behavior of other strongly coupled CFTs which are in
general not tractable with known methods.
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Thank you

for your attention
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