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The Q deformation

The Q background was introduced by Nekrasov as a way of regularizing the
four-dimensional instanton partition function and reproducing the results of Seiberg
and Witten.

One introduces an appropriate deformation of the four-dimensional theory, with
parameters €1 and &, breaking rotational invariance of R*.

The path integrals localize on a discrete set of points.
The k-instanton contribution to the prepotential for the original (undeformed) theory is
found in the limit €; — O.
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Philosophy

If a problem is hard, make it harder
(and new structures will appear).
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Finite ¢

In fact this turned out to be a much richer subject.
The partition function in the Q background has a meaning also for finite values of €.

> Inthe limit €1 = — €, &« gs the partition function is the same as the one for
topological strings on a CY related to the spectral curve;

» In the limit € 1 = 0 the gauge theory is closely related to quantum integrable
models with h = € 5;

> Inthe general case €1 # €5, we have the refinement of topological strings;

» The AGT construction can be understood in terms of compactifications of a
six-dimensional theory on the Q background.
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The fluxtrap

But there is more.

The string theory background that realizes this deformation has many interesting
properties:

> it's an exact CFT

» it's directly related to noncommutativity

» can be used to realize explicitly field theories in presence of defects of different
dimensions
» it's the common origin of different gauge theories that seem unrelated.
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Melvin construction in field theory

We want to write the String Theoretical analog to a compactification with a Wilson line.

In the Melvin construction one starts with an S’ fibration over IR*, with a non-trivial
monodromy

S'(a) — M
l {DNCH-Znnu, heZ
O~ 6,+2m e Rny, !
]RA'(Dk/ek) k k kNMy

T-duality is the string theory version of a reduction on S'.
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The String Theory version

Start from a Ricci-flat metric ds? = gjjdx' dx 4+ d(x”)?, where X” = Rt, where ghas N < 4
(non-bounded) rotational isometries generated by dg,.
Pass to a set of disentangled variables

dr=6,— ¢ ,J?a,
This modifies the boundary conditions from
(G, 0k) ~ (T, 04) +2mny (1, e R) +2mn(0,1)
to
(T, &¢) ~ (T, &) +2mn, (1,0) + 27 (0, 1).
The price to pay is the appearance of a graviphoton e U; dx'.
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The generic fluxtrap

Now T-dualize in G. We get a B-field and a non-trivial dilaton: the fluxtrap

£2U;U;dx dx AL

ds? = gjdxidx — : .,
ST IS0 T Tt e2GU

Uidx' A dx?
B=e¢e—«——,
14+ 2,V
!/ —CDQ
e ® = —”";\/1 T e2UU,

We have taken the limit R — 0: in this picture the irrelevant degrees of freedom
(rotations around ) have been removed (they turn into infinitely heavy winding modes).
All the local degrees of freedom are physical.
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The generic fluxtrap

» For € = 0thisis the initial Ricci-flat

k

o ()2 = e2uUdX dxf ba'C ground ;

ds? = gjdx'dx + il » Uis the generator of the rotational
. 1+ e“UU isometries before and after the
B e Uidxi A dx? duality
14+ 20U’
N

7 am® ’.

e = Y2 Tt 20U, V9= ), ekds,

» branes will be trapped in U = 0 by the terms in the denominators
» ¢ regularizes the rotation, which is always bounded if € # 0

U 1
2
| Ullfrap = TT 20U ©
» the dilaton has a maximum when U = 0. i
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Fluxtrap around flat space

To get an intuitive picture of the deformation, start with flat space and twist in two
directions (&1 and ).

U~ U+ 2mny, V~V+21ny,
61N91+27T81Runu, 92N62+27'[82/~?vnv,

After two T-dualities, the space takes the form of a product
Mio = M3( 1) x M3(e2) x R*

where M3(€) is a R fibration (the dual direction) over a cigar with asymptotic radius
1/ €. The NS three-form is the volume of Ms.
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Supersymmetry in type IIA

T—duality maps the Killing spinors n i, into local type iia Killing spinors nii, .
Using an appropriate vielbein for the T-dual metric they take the form nj, = nk, + nf
with

P 5
“a—(ll—l—l'H)Hexp[ C o0 k] pilux

ol ux
||a_(]l_r”)r HEXP|: rpk k:| Pﬂ NMw,

where T is the gamma matrix in the u direction normalized to unity.
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Supersymmetry

Depending on n, the projector P can either break all supersymmetries or preserve
some of them. In the latter case, at least 1/2N=" of the original ones are preserved.

Examples:
» In flat space n is a constant spinor with 32 independent components. Each
independent ¢ breaks 1/2 of the supersymmetry;
» There are special configurations with 12 supercharges

» In the Taub-nut case, the orientation is fixed by the triholomorphic U(1) isometry:

» The choice €1 = — e, preserves all supersymmetries.
» The choice €1 = €, breaks all supersymmetries.
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The point

We look at a String Theory realization of the Melvin construction
T-duality removes the non-physical degrees of freedom
We find a background where all local degrees of freedom are physical

We can study this background using String Theory

vV V. v v Vv

Supersymmetry in terms of Killing spinors in the bulk

w
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The gauge theory

Now that we have found the bulk we can try to reproduce the Q-deformed

four-dimensional gauge theory. The idea is to place D-branes a la Hanany-Witten, so
that the gauge theory encodes their fluctuations.

Consider a stack of D4-branes extended in the directions of the shifts.

X O 1 2 3 45 6 7 8 9
fluxbrane €1 €7 €3 X X X o
NS5 X X X X X

D4 X X X X

&

w



The Q-deformed action

Now we just need to write the DBI action expanded at second order in the fields:

2
2, &
"+ 3

ety =~ (IFIP+ 5l do 421 c1gF (o + o)),
where U is the pullback of the vector field U,
eU=efU=¢elU0,=¢e1(&%1—&"9) + e, (£%3— £39,).
Lagrangian of the Q-deformation of N' = 2 SYM. [Nekrasov-Okounkov]
The advantage is that now we can understand it as coming from string theory and we

have an algorithmic way to generalize it.
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The interpretation

1 2 1 . 2 52
Doy = _@(1 + IFI2+ 5l do +2i 12+ =

pd(e +0)[17),

» the terms in € are odd under charge conjugation A, — —A,,. This is because they

come from the B field. This is the leading deformation of the background

> the terms in &2 come from metric and dilaton. They control classical gauge

configurations and hence directly to the instanton moduli space

w



A single instanton

» A D-instanton is a D(—1) brane. Its action is

_ . vt Y
Lo = e~ P4fermions = /1 + 2||U||2 + —=2L =
st \ Ul T 20

» a critical point for the action is a critical point for the dilaton profile: U= 0. This is
the string theoretical version of localization.

» These are moduli, so the path integral is just a standard integral
= /dzkdekw exp[—u 5]

k k
_ k M ~
= /dZ xexp[—u\ﬂ + U2] AT 11} g

_ Ni(w) ANy(11)
[Tk, e, €1€22m—e1—e2)(2m+ e+ e2)

w



The point

v

We realize the deformed four-dimensional gauge theory in terms of Hanany-Witten
branes (D4 suspended between NS5)

The fluxtrap background is pulled back on the branes and modifies the theory
We have a geometric origin for the new terms in the action

v

v

v

Localization can be understood in terms of dilaton gradient

w
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Taub—nut

In order to make our construction more transparent it is convenient to start from a
Taub-nut space and put a fluxtrap in TNg x S' x R>.

S'(6) — TN
A Taub-nut space is a singular S fibration over R3 l
R*(r)
It interpolates between R* for r — 0 and R3 x S' for r — oo.
R3 x S'

IRA'

- Wl
N \
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Flux—trap

L v(r)
2 _ vy 2 0 2 912 2
ds (r)dr +V(r)+52(d¢+ cos w dy) +V(r)+52(dx) +dx§ 4,
3
B=_° o 9
Vi 1 &2 (dé + Qcos wdy) Adx’,
2
) &
e 1+—V(r).

This interpolates between the fluxtrap in flat space that we used to reproduce
Nekrasov's action and R3 x T2 with a constant B field.

fluxtrap on R* R3 x T2 plus constant B field
- ST
N 1V
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The alternative description

In the limit r — oo the Taub-nut becomes R3 x S' and the fluxtrap is the result of a
T—duality on a torus with shear, i.e. a constant B field.

Putting a D4-brane wrapping the Taub-nut space we obtain the alternative description
of the O deformation proposed by Witten and Nekrasov.

w
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Noncommutativity

The Q deformation for €1 = — €, is related to topological strings.
It has been observed that

‘ ‘ the Riemann surface 2 behaves for many purposes as a subspace of a
quantum mechanical (s, v) phase space where gs = h. [Aganagic,
Dijkgraaf, Klemm, Marino, Vafa] , ,

‘ ‘ this gauge theory provides the quantization of the classical integrable
system underlying the moduli space of vacua of the ordinary four
dimensional N = 2 theory [Nekrasov, Shatashvili] ’ ’

Our construction gives a precise geometrical interpretation for this observation in terms
of Riemann surface on a non-commutative plane.

w



Reduction

Lift the background to M-theory... and reduce it on ¢

2
2 _ 1/2 4.2 —1/2 2 € 912 10\2
ds® = V(r)'/“dre+ V(r) [dxﬂrmm —V(r)+ =2 ((dx) + (dx™) )] ,
_ & 29 10
B_V(r)—i—szdx Adx',

e ® = V(N4 /V(n+ €2,
Ci = Qcoswdy,
€ Qcos w

_ 9 10
_—V(r)+ 62dx Adx'CAdy .

C3

These are Q D6-branes extended in (x4, ...,x'?) in presence of an Q-deformation.

w
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The Seiberg-Witten map

An equivalent description is obtained by applying the Seiberg-Witten map to the
Dé-brane theory in order to turn the B—field into a non-commutativity parameter:

(g+B) =g "+o,

where § and B are the pullbacks of metric and B-field on the brane and g is the new
effective metric for a non-commutative space satisfying

[x",xf} —=iel,

Applying this map to our case:

- i 1 2
gijdx'd¥ = dxj 1o,

[x(),xm] =ie.

All dependence on ¢ disappears from the Dé-brane theory and is turned into a
constant non-commutativity parameter. v
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A non-commutative Riemann surface

Let’s follow the fate of the branes whose dynamics reproduce the Q-deformed gauge
theory.

Start from the configuration of D4-NS5s, with the D4 wrapping the Taub—nut space.

In the M—theory lift this configuration turns into a single M5-brane extended in the
directions (xo, .. .,x3) and wrapped on a Riemann surface = embedded in the (s, v)
plane.

Reduction on ¢ turns the M5-brane into an D4-brane extended in r and wrapped on
>, which is now embedded in the worldvolume of the Dé-brane.

For finite € the Riemann surface X is embedded in a non-commutative complex plane
where

[s,v]=1i¢€.
v



The point

v

vV V. Vv Vv

We repeat our construction starting from a Taub-nut space in the bulk

The Taub-trap solution interpolates between Nekrasov's original description and
Nekrasov-Witten's “alternative” description

We lift the IIA background to M-theory
We reduce it on the isometry circle.
The resulting Dé background has a natural non-commutativity ¢

The gauge theory describes the dynamics of a D4 wrapped on a Riemann surface
living on a non-commutative C? plane. This is the geometric interpretation of the
“quantum spectral curve”.

w
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The RR fluxtrap

Let’s look a bit closer at the ten-dimensional background after S-duality.

d 1\2
dsfo = A | —(dx°)* + % + (6IJ - —UAL;J> dx’de] ,

e®=A ,
Cr= - d
2 = p X A U,
where A% =1+ U;U'. This is a compact form for writing up to 4 & parameters (U is the

generator of the U(1): dU = Y5 € adza A dzp).

What happens if, instead of putting the Q-deformation branes, we consider different
probe brane configurations in the same bulk geometry?

u
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The Wilson line

The simplest configuration is the one of a D1-brane:

X O 1 2 3 45 6 7 8 9

fluxtrap o €1 €5 €3 €4

Dl-brane x x Z 72 Z3 b

The DBI action reads:

So1 =~ 22/d2

where B, = ¢ ,°.

F2+Z(a 2+ ieaBu2") (9424 - isAB“ZA)],

This is a gauge theory in presence of a background Wilson line!

w
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Wilson line

What has happened?

So1 =~ 22/d2

» the contribution at first order in € comes from the Ramond-Ramond (rr) flux in the
bulk via the Chern-Simons (cs) term;

F2+Z(a 2+ ieaBu2") (9424 - isAB“ZA)],

» the metric and the dilaton contribute to the quadratic term.

The same flux that we had described as a noncommutativity for D4 branes now is a
Wilson line.

w
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Wilson line

In gauge theory language we have gauged the U(1) symmetries that rotate the four
complex fields and given them a time-like vacuum expectation value (vev). Technically
we have a new covariant derivative

D, =d,+B,

Geometrically, we break the SO(1, d) symmetry to SO(d) and the undeformed theory is
coupled to a one-dimensional defect extended in the time direction.

From the string theory we know that the configuration preserves a number of
supersymmetries that depends on how many € are non-zero.

u




3d defects

Set €1 = — £, and all the others to zero.
Now T-dualize twice and the bulk fields become

o) ab dx@ de - U[UJ dX’ dXJ

dsZ:A(na,gdx“dxﬁ—l—dudx’dxj)+ 7

dx® A dx3 A dx4)

C4:U/\<—dx0/\dx1/\dx5+ 5
A

The dilaton has disappeared and we obtain a solution that has only metric and 5-form
flux.

Remember: this is still just a few dualities away from flat space with identifications, which
is an exact string theory solution.
In principle we can have complete worldsheet control beyond supergravity.

u
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3d defects

Now add a probe D5 brane extended in {x°,...,x°}.

SBS = /déx [— %(1 — UUy)a, Xk x! — %UJuJaax’aax’

- %EHVDF”DLU,JXJE)“X’ — %FaaF“a

- %(1 — UU)FqpgF*#
1
-2+ U,U’)FabFab—i—(’)(s3>] )
where u =0,...,6, a =0,1,2, a=3,4,5.

w



How do | read this?

A simple geometric way to understand the meaning of this configuration is to look at
the Wess—Zumino (wz) term (leading deformation).

Start with the Wilson line configuration. There:
Swz = / OAdx!
this is a defect extended in time.

In the D6 brane case, the wz term reads
Suz = /F/\ OA (b Adx" Adx® = did A dxt A )
It is clear that we are breaking SO(1,5) into SO(1,2) x SO(3).

We have added two orthogonal three-dimensional defects. y
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Covariant derivative

For Wilson lines we had found a covariant derivative D,, = d,+B,. What about here?

Again look at the wz term. We can rewrite it as
/ dxa“ XA, X
where A is a connection.
1_ Vo
Auy = i:uup,: wyy
and = = € 487 + € abc is the sum of the volume forms on the two defects.

It's like having a non-minimal coupling. Very convenient for the supersymmetric analysis.

w
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Defects

In gauge theory language we have a new covariant derivative
Duy=0udu+Auy

Geometrically, we break the SO(1,5) symmetry to SO(1,2) x SO(2) and the
undeformed theory is coupled to a three-dimensional defect.

From the string theory we know that the configuration preserves a number of
supersymmetries that depends on how many € are non-zero.

w



The point

» We can probe the same string background using different branes

» The same bulk fields that lead to the noncommutativity now correspond to
background Wilson lines

» |In different frames we obtain extended defects of codimension 2 and 3

» All the configurations are supersymmetric and the amount of supersymmetry can be
controlled via the & parameters.

» Interesting ways of deforming supersymmetric gauge theories.
» Useful to study non-perturbative physics, dualities...

u
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Conclusions

» We started with a string realization of the Q deformation

» Itis deeply related to noncommutativity

» Itis (dual to) an exact string theory

» When probed with different branes it describes defects of different dimension

» All the configurations that we have seen are by construction supersymmetric.

» The string theoretical description is particularly simple and helpful in the study of

the gauge theory properties.

u
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