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The Ω deformation

The Ω background was introduced by Nekrasov as a way of regularizing the
four-dimensional instanton partition function and reproducing the results of Seiberg
and Witten.

One introduces an appropriate deformation of the four-dimensional theory, with
parameters ε1 and ε2, breaking rotational invariance of R4.

The path integrals localize on a discrete set of points.
The k-instanton contribution to the prepotential for the original (undeformed) theory is
found in the limit εi → 0.
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Philosophy

If a problem is hard, make it harder
(and new structures will appear).
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Finite ε

In fact this turned out to be a much richer subject.
The partition function in the Ω background has a meaning also for finite values of ε.

▶ In the limit ε1 = −ε2 ∝ gs the partition function is the same as the one for
topological strings on a CY related to the spectral curve;

▶ In the limit ε1 = 0 the gauge theory is closely related to quantum integrable
models with h̄ = ε2;

▶ In the general case ε1 ̸= ε2, we have the refinement of topological strings;
▶ The AGT construction can be understood in terms of compactifications of a

six-dimensional theory on the Ω background.
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The fluxtrap

But there is more.

The string theory background that realizes this deformation has many interesting
properties:

▶ it’s an exact CFT
▶ it’s directly related to noncommutativity
▶ can be used to realize explicitly field theories in presence of defects of different

dimensions
▶ it’s the common origin of different gauge theories that seem unrelated.
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Melvin construction in field theory

We want to write the String Theoretical analog to a compactification with a Wilson line.
In the Melvin construction one starts with an S1 fibration over R4, with a non-trivial
monodromy

S1(ũ) M

R4(ρk,θk)

{
ũ ∼ ũ+ 2πnu ,
θk ∼ θk + 2πεkR̃nu ,

nu ∈ Z

T-duality is the string theory version of a reduction on S1.
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The String Theory version

Start from a Ricci-flat metric ds2 = gij dxi dxj + d(x̃9)2, where x̃9 = R̃ũ, where g has N ≤ 4
(non-bounded) rotational isometries generated by ∂θk .
Pass to a set of disentangled variables

φk = θk −εkR̃ũ ,

This modifies the boundary conditions from

(ũ,θk) ∼ (ũ,θk) + 2πnu
(
1,εkR̃

)
+ 2πnk(0, 1)

to

(ũ,φk) ∼ (ũ,φk) + 2πnu (1, 0) + 2πnk(0, 1) .

The price to pay is the appearance of a graviphoton εUi dxi.
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The generic fluxtrap

Now T-dualize in ũ. We get a B-field and a non-trivial dilaton: the fluxtrap

ds2 = gij dxi dxj −
ε2UiUj dxi dxj

1+ε2UiUi
+

(dx9)2

1+ε2UiUi
,

B = ε
Ui dxi ∧ dx9

1+ε2UiUi
,

e−Φ =

√
α′ e−Φ0

R

√
1+ε2UiUi ,

We have taken the limit R̃ → 0: in this picture the irrelevant degrees of freedom
(rotations around ũ) have been removed (they turn into infinitely heavy winding modes).
All the local degrees of freedom are physical.
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The generic fluxtrap

ds2 = gij dxi dxj +
(dx9)2 −ε2UiUj dxi dxj

1+ε2UiUi
,

B = ε
Ui dxi ∧ dx9

1+ε2UiUi
,

e−Φ =

√
α′ e−Φ0

R

√
1+ε2UiUi ,

▶ Forε = 0 this is the initial Ricci-flat
background

▶ U is the generator of the rotational
isometries before and after the
duality

εUi ∂i=
N

∑
k=1

εk ∂φk

▶ branes will be trapped in U = 0 by the terms in the denominators
▶ ε regularizes the rotation, which is always bounded if ε ̸= 0

∥U∥2trap =
UiUi

1+ε2UiUi
<

1
ε2 .

▶ the dilaton has a maximum when U = 0.
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Fluxtrap around flat space

To get an intuitive picture of the deformation, start with flat space and twist in two
directions (ũ and ṽ).{

ũ ∼ ũ+ 2πnu ,
θ1 ∼ θ1 + 2πε1R̃unu ,

{
ṽ ∼ ṽ+ 2πnv ,
θ2 ∼ θ2 + 2πε2R̃vnv ,

After two T-dualities, the space takes the form of a product

M10 = M3(ε1)×M3(ε2)× R4

whereM3(ε) is a R fibration (the dual direction) over a cigar with asymptotic radius
1/ε. The NS three-form is the volume ofM3.

ρφ

R2 1/ε
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Supersymmetry in type IIA

T–duality maps the Killing spinors ηiib into local type iia Killing spinors ηiia .
Using an appropriate vielbein for the T–dual metric they take the form ηiia = ηL

iia +η
R
iia

with 
ηL

iia = (1+Γ11)
N

∏
k=1

exp
[
φk

2
Γρkθk

]
Pfluxηw ,

ηR
iia = (1−Γ11)Γu

N

∏
k=1

exp
[
φk

2
Γρkθk

]
Pfluxηw ,

where Γu is the gamma matrix in the u direction normalized to unity.
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Supersymmetry

Depending onηw, the projector Pflux can either break all supersymmetries or preserve
some of them. In the latter case, at least 1/2N−1 of the original ones are preserved.

Examples:
▶ In flat space ηw is a constant spinor with 32 independent components. Each

independent ε breaks 1/2 of the supersymmetry;
▶ There are special configurations with 12 supercharges
▶ In the Taub–nut case, the orientation is fixed by the triholomorphic U(1) isometry:

▶ The choice ε1 = −ε2 preserves all supersymmetries.
▶ The choice ε1 = ε2 breaks all supersymmetries.
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The point

▶ We look at a String Theory realization of the Melvin construction
▶ T-duality removes the non-physical degrees of freedom
▶ We find a background where all local degrees of freedom are physical
▶ We can study this background using String Theory
▶ Supersymmetry in terms of Killing spinors in the bulk
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The gauge theory

Now that we have found the bulk we can try to reproduce the Ω-deformed
four-dimensional gauge theory. The idea is to place D–branes a la Hanany–Witten, so
that the gauge theory encodes their fluctuations.

Consider a stack of D4–branes extended in the directions of the shifts.

X 0 1 2 3 4 5 6 7 8 9

fluxbrane ε1 ε2 ε3 × × × ◦
NS5 × × × × × ×
D4 × × × × ×
ξ 0 1 2 3 4
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The Ω-deformed action

Now we just need to write the DBI action expanded at second order in the fields:

Lε1,ε2 = − 1
4g2

4

(
∥F∥2 + 1

2
∥dϕ+ 2 iεıÛF∥

2 +
ε2

8
∥ıÛ d(ϕ+ ϕ̄)∥2

)
,

where Û is the pullback of the vector field U,

ε Û = εf∗U = εÛi ∂ξi= ε1
(
ξ0∂1 −ξ1∂0

)
+ε2

(
ξ2∂3 −ξ3∂2

)
.

Lagrangian of the Ω–deformation of N = 2 SYM. [Nekrasov-Okounkov]

The advantage is that now we can understand it as coming from string theory and we
have an algorithmic way to generalize it.
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The interpretation

Lε1,ε2 = − 1
4g2

4

(
1+ ∥F∥2 + 1

2
∥dϕ+ 2 iεıÛF∥

2 +
ε2

8
∥ıÛ d(ϕ+ ϕ̄)∥2

)
,

▶ the terms in ε are odd under charge conjugation Aμ → −Aμ. This is because they
come from the B field. This is the leading deformation of the background

▶ the terms in ε2 come from metric and dilaton. They control classical gauge
configurations and hence directly to the instanton moduli space
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A single instanton

▶ A D–instanton is a D(−1) brane. Its action is

Linst = e−Φ+fermions =
√

1+ε2∥U∥2 + ψμω̄μνψν√
1+ε2∥U∥2

▶ a critical point for the action is a critical point for the dilaton profile: U = 0. This is
the string theoretical version of localization.

▶ These are moduli, so the path integral is just a standard integral

I =
∫
d2kx d2kψ exp[−μS]

=
∫
d2kx exp

[
−μ

√
1+ U2

] μk

2k(1+ U2)k/2

k

∏
l=1

ε̄l

=
Nk(μ)

∏k
l=1εl

=
4N4(μ)

ε1ε2(2m−ε1 −ε2)(2m+ε1 +ε2)
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The point

▶ We realize the deformed four-dimensional gauge theory in terms of Hanany–Witten
branes (D4 suspended between NS5)

▶ The fluxtrap background is pulled back on the branes and modifies the theory
▶ We have a geometric origin for the new terms in the action
▶ Localization can be understood in terms of dilaton gradient
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Taub–nut

In order to make our construction more transparent it is convenient to start from a
Taub–nut space and put a fluxtrap in TNQ × S1 × R5.

A Taub–nut space is a singular S1 fibration over R3

S1(θ) TN

R3(r)

It interpolates between R4 for r → 0 and R3 × S1 for r → ∞.

rθ

R4 R3 × S1
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Flux–trap

ds2 = V(r)dr2 +
1

V(r) +ε2 (dφ+Q cosωdψ)2 +
V(r)

V(r) +ε2 (dx
9)2 + dx24...8 ,

B =
ε

V(r) +ε2 (dφ+Q cosωdψ) ∧ dx9 ,

e−Φ =

√
1+

ε2

V(r)
.

This interpolates between the fluxtrap in flat space that we used to reproduce
Nekrasov’s action and R3 × T2 with a constant B field.

rφ

fluxtrap on R4 R3 × T2 plus constant B field
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The alternative description

In the limit r → ∞ the Taub–nut becomes R3 × S1 and the fluxtrap is the result of a
T–duality on a torus with shear, i.e. a constant B field.

Putting a D4–brane wrapping the Taub–nut space we obtain the alternative description
of the Ω deformation proposed by Witten and Nekrasov.
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Noncommutativity

The Ω deformation for ε1 = −ε2 is related to topological strings.
It has been observed that

“ the Riemann surface Σ behaves for many purposes as a subspace of a
quantum mechanical (s, v) phase space where gs = h̄. [Aganagic,
Dijkgraaf, Klemm, Marino, Vafa] ”

“ this gauge theory provides the quantization of the classical integrable
system underlying the moduli space of vacua of the ordinary four
dimensional N = 2 theory [Nekrasov, Shatashvili] ”

Our construction gives a precise geometrical interpretation for this observation in terms
of Riemann surface on a non-commutative plane.
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Reduction

Lift the background to M-theory... and reduce it on φ

ds2 = V(r)1/2 dr2 + V(r)−1/2
[
dx24...10 −

ε2

V(r) +ε2

(
(dx9)2 + (dx10)2

)]
,

B =
ε

V(r) +ε2 dx9 ∧ dx10 ,

e−Φ = V(r)1/4
√
V(r) +ε2 ,

C1 = Q cosω dψ ,

C3 =
εQ cosω
V(r) +ε2 dx9 ∧ dx10 ∧ dψ .

These are Q D6–branes extended in (x4, . . . , x10) in presence of an Ω–deformation.
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The Seiberg–Witten map

An equivalent description is obtained by applying the Seiberg–Witten map to the
D6–brane theory in order to turn the B–field into a non-commutativity parameter:(

ĝ+ B̂
)−1

= g̃−1 +Θ ,

where ĝ and B̂ are the pullbacks of metric and B–field on the brane and g̃ is the new
effective metric for a non-commutative space satisfying[

xi, xj
]
= iΘij .

Applying this map to our case:

g̃ij dxi dxj = dx24...10 ,[
x9, x10

]
= iε .

All dependence on ε disappears from the D6–brane theory and is turned into a
constant non-commutativity parameter.
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A non-commutative Riemann surface

Let’s follow the fate of the branes whose dynamics reproduce the Ω–deformed gauge
theory.

Start from the configuration of D4–NS5s, with the D4 wrapping the Taub–nut space.

In the M–theory lift this configuration turns into a single M5–brane extended in the
directions (x0, . . . , x3) and wrapped on a Riemann surface Σ embedded in the (s, v)
plane.

Reduction on φ turns the M5–brane into an D4–brane extended in r and wrapped on
Σ, which is now embedded in the worldvolume of the D6–brane.
For finite ε the Riemann surface Σ is embedded in a non-commutative complex plane
where

[s, v] = iε .
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The point

▶ We repeat our construction starting from a Taub–nut space in the bulk
▶ The Taub–trap solution interpolates between Nekrasov’s original description and

Nekrasov–Witten’s “alternative” description
▶ We lift the IIA background to M–theory
▶ We reduce it on the isometry circle.
▶ The resulting D6 background has a natural non–commutativity ε
▶ The gauge theory describes the dynamics of a D4 wrapped on a Riemann surface

living on a non-commutative C2 plane. This is the geometric interpretation of the
“quantum spectral curve”.
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The RR fluxtrap

Let’s look a bit closer at the ten-dimensional background after S-duality.

ds210 = Δ
[
−(dx0)2 +

(dx1)2

Δ2 +

(
δIJ −

UIUJ
Δ2

)
dxIdxJ

]
,

eΦ = Δ ,

C2 =
1
Δ2dx

1 ∧ U ,

where Δ2 = 1+ UIUI. This is a compact form for writing up to 4 ε parameters (U is the
generator of the U(1): dU = ∑AεA dzA ∧ dz̄A).

What happens if, instead of putting the Ω-deformation branes, we consider different
probe brane configurations in the same bulk geometry?
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The Wilson line

The simplest configuration is the one of a D1-brane:

x 0 1 2 3 4 5 6 7 8 9

fluxtrap ◦ ε1 ε2 ε3 ε4

D1–brane × × Z1 Z2 Z3 Z4

The DBI action reads:

SD1 = − 1
2g2

∫
d2x

[
1
2
F2 +

4

∑
k=1

(
∂μZA + iεABμZA

)(
∂μZ̄A − iεABμZ̄A

)]
,

where Bμ = δμ0.

This is a gauge theory in presence of a background Wilson line!
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Wilson line

What has happened?

SD1 = − 1
2g2

∫
d2x

[
1
2
F2 +

4

∑
k=1

(
∂μZA + iεABμZA

)(
∂μZ̄A − iεABμZ̄A

)]
,

▶ the contribution at first order in ε comes from the Ramond–Ramond (rr) flux in the
bulk via the Chern–Simons (cs) term;

▶ the metric and the dilaton contribute to the quadratic term.

The same flux that we had described as a noncommutativity for D4 branes now is a
Wilson line.
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Wilson line

In gauge theory language we have gauged the U(1) symmetries that rotate the four
complex fields and given them a time-like vacuum expectation value (vev). Technically
we have a new covariant derivative

Dμ = ∂μ+Bμ

Geometrically, we break the SO(1,d) symmetry to SO(d) and the undeformed theory is
coupled to a one-dimensional defect extended in the time direction.

From the string theory we know that the configuration preserves a number of
supersymmetries that depends on how many ε are non-zero.
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3d defects

Set ε1 = −ε2 and all the others to zero.
Now T-dualize twice and the bulk fields become

ds2 = Δ
(
ηαβ dxα dxβ +δIJ dxI dxJ

)
+
δab dxa dxb − UIUJ dxI dxJ

Δ
,

C4 = U∧
(
−dx0 ∧ dx1 ∧ dx5 +

dx2 ∧ dx3 ∧ dx4

Δ2

)
,

The dilaton has disappeared and we obtain a solution that has only metric and 5-form
flux.

Remember: this is still just a few dualities away from flat space with identifications, which
is an exact string theory solution.
In principle we can have complete worldsheet control beyond supergravity.
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3d defects

Now add a probe D5 brane extended in {x0, . . . , x5}.

SD5
B =

∫
d6x

[
− 1

2
(1− UIUJ)∂μXI∂μXJ −

1
2
UJUJ∂aXI∂aXI

− 1
2
ΞμνρFνρωIJXJ∂μXI −

1
2
FαaFαa

− 1
4
(1− UIUI)FαβFαβ

− 1
4
(1+ UIUI)FabF

ab +O
(
ε3

)]
,

where μ = 0, . . . , 6, α = 0, 1, 2, a = 3, 4, 5.
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How do I read this?

A simple geometric way to understand the meaning of this configuration is to look at
the Wess–Zumino (wz) term (leading deformation).

Start with the Wilson line configuration. There:

Swz =
∫
Û∧ dx1

this is a defect extended in time.

In the D6 brane case, the wz term reads

Swz =
∫
F∧ Û∧

(
dx0 ∧ dx1 ∧ dx2 − dx3 ∧ dx4 ∧ dx5

)
It is clear that we are breaking SO(1, 5) into SO(1, 2)× SO(3).

We have added two orthogonal three-dimensional defects.
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Covariant derivative

For Wilson lines we had found a covariant derivative Dμ = ∂μ+Bμ. What about here?

Again look at the wz term. We can rewrite it as∫
d6x ∂μXIAμIJXJ

where A is a connection.

AμIJ =
1
2
ΞμνρFνρωIJ

and Ξ = εαβγ +εabc is the sum of the volume forms on the two defects.

It’s like having a non-minimal coupling. Very convenient for the supersymmetric analysis.
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Defects

In gauge theory language we have a new covariant derivative

DμIJ = ∂μδIJ +AμIJ

Geometrically, we break the SO(1, 5) symmetry to SO(1, 2)× SO(2) and the
undeformed theory is coupled to a three-dimensional defect.

From the string theory we know that the configuration preserves a number of
supersymmetries that depends on how many ε are non-zero.
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The point

▶ We can probe the same string background using different branes
▶ The same bulk fields that lead to the noncommutativity now correspond to

background Wilson lines
▶ In different frames we obtain extended defects of codimension 2 and 3
▶ All the configurations are supersymmetric and the amount of supersymmetry can be

controlled via the ε parameters.
▶ Interesting ways of deforming supersymmetric gauge theories.
▶ Useful to study non-perturbative physics, dualities...
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Conclusions

▶ We started with a string realization of the Ω deformation
▶ It is deeply related to noncommutativity
▶ It is (dual to) an exact string theory
▶ When probed with different branes it describes defects of different dimension
▶ All the configurations that we have seen are by construction supersymmetric.
▶ The string theoretical description is particularly simple and helpful in the study of

the gauge theory properties.
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Thank you

for your attention
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