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Why are we here? Conformal field theories

extrema of the RG flow critical phenomena
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Why are we here? Conformal field theories are hard

Most conformal field theories (CFTs) lack nice limits where they
become simple and solvable.
No parameter of the theory can be dialed to a simplifying limit.

There are sometimes sectors of the theory where anomalous
dimension and OPE coefficients simplify.
Typically this happens in presence of a symmetry.

IDEA: study subsectors of the theory with fixed quantum number Q.
A large Q becomes the controlling parameter in a perturbative
expansion.

Domenico Orlando Attacking strong coupling with large charge



Introduction Effective action from classical scale invariance Quantum analysis

no bootstrap here!

This approach is
completely orthogonal
to bootstrap.
We will use an effective
action.
We will access sectors
that are exponentially
difficult to reach with
bootstrap.
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Summary of the results

A very concrete example where this type of simplification happens.

We consider the O(N) vector model in three dimensions. In the IR it
flows to a conformal fixed point [Wilson & Fisher].

We will find an explicit formula for the dimension of the lowest
primary at fixed charge:

ΔQ =
c3/2

2
√
π
Q3/2 + 2

√
πc1/2Q1/2 − 0.093+O

(
Q−1/2

)

The very same formula describes the large-R-charge sector of a
supersymmetric N = 2,d = 3 model.
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Summary of the results
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Summary of the results
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Scales

We want to write a Wilsonian effective action.

Choose a cutoff Λ, separate the fields into high and low frequency
φH,φL and do the path integral over the high-frequency part:

eiSΛ(φL)=
∫

DφH eiS(φH,φL)

We need to understand the scales.
▶ We look at a finite box of typical length R
▶ The U(1) charge Q fixes a second scale ρ1/2 ∼ Q1/2/R

We think of the CFT as a Wilsonian effective action at the fixed point
with

1
R
≪ Λ≪ ρ1/2 ∼ Q1/2

R
≪ ΛUV = g2 ⇒ Q ≫ 1

Claim: For Λ≪ ρ1/2 the effective action is weakly coupled and
under perturbative control in powers of ρ−1.
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The O(N) model

The UV Lagrangian of the O(N) vector model is of the form

LUV = ∂μφa∂μφa − g2(φaφa)2,

Wilson and Fisher showed that this flows to a conformal IR fixed point.

UV theory RG flow−−−−→ IR conformal fixed point.

The idea is to make use of this fact to write an effective Wilsonian
action for this universality class.
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Wilsonian action

The Wilsonian action is fundamentally useless because it contains
infinite terms.

At best:

▶ a cute qualitative picture;
▶ might allow you to get the anomalies right;
▶ something that helps you organize perturbative calculations, if

your system is already weakly-coupled for some reason;
▶ maybe a convergent expansion in derivatives.

supe
rstit

ion
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Approximate scale invariance

Consider the O(2) universality class.
The order parameter is a complex number ϕ = aeibχ.
Give a large vev to a:

Λ≪ a2 ≪ g2.

In this limit the Lagrangian is (approximately) scale-invariant with
corrections ∼ Λ/a2.

The IR effective Wilsonian action must be

LIR =
1
2
(∂μa)

2 +
b2

2
a2(∂μχ)2 − R

16
a2 − λ

6
a6

+ (higher derivative terms).

where R is the scalar curvature, and b and λ are numerical constants.

contr
olled
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Approximate scale invariance

The charge density is simply

ρ :=
δLIR

δχ̇
= b2a2χ̇

and using the equations of motion (eom) a4 ∼ b2/λχ̇2 we find that
the total on shell charge is

Q ∼ 4πR2b
√
λa4

so that the condition Λ≪ a2 ≪ g2 on the scales becomes (as
promised)

1
R
≪ Λ≪ Q1/2

R
≪ g2

which is consistent if the charge is large

Q ≫ 1.
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Big charge, small charge

The approximation is supposed to work for large charges.
Too good to be true?
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FIG. 2. The (n, M2)-trajectories for the states a0(10++), a2(12++) and a4(14++) with a) µ2 = 1.38 GeV2 and b) µ2 = 1.10
GeV2; Two variants for the f2(02

++)-trajectories with the slope parameter c) µ2 = 1.38 GeV2 and d) µ2 = 1.10 GeV2. The
f0(00

++)-trajectories for e) real resonance states and f) K-matrix pole states. As in Fig. 1, the open circles stand for states
predicted by the present classification.

5

Think of Regge trajectories.
The prediction of the theory is

m2 ∝ J
(
1+O

(
J−1
))

but experimentally everything
works so well at small J that
String Theory was invented.

The unreasonable effectiveness of the large quantum number
expansion.
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RG analysis

Now I have to justify my claims:
▶ Show that the classical solution is precisely of the kind found in

the previous slide.
▶ See how the fluctuations on top of the classical solutions are

described by Goldstone modes.
▶ Show that the higher order terms are suppressed in 1/Q for any

value of the couplings b and λ.
▶ Derive the formula for the conformal dimensions.
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Abelian global symmetry at fixed charge

Consider a classical system described by Hamiltonian H with a
conserved Abelian global symmetry:

{H,Q} = 0 .

we impose the first-class constraint

Q =
∫
ρdx = Q = const .

and the corresponding gauge transformation δεf = {f,εQ}.
Introduce the canonical conjugate χ to the density ρ

{χ,Q} = 1 , so that δεχ = ε ,

and assume all the other variables (pi,qi) to be gauge invariant.
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Abelian global symmetry at fixed charge

For concreteness, consider a natural Hamiltonian system:

H = 1
2

N

∑
k=0

fk(q)p
2
k +

1
2

N

∑
k=0

gk(q)(∇qk)
2 + V(q).

We want to find the ground state of this system.
The Hamiltonian is a sum of positive terms, we minimize them
separately.
Because of the constraint, ρ ̸= 0, but we are free to set

∇qi = 0, ∇χ = 0, pi = 0, i = 1, . . . ,N .

Since nothing depends on the position anymore, the constraint
becomes∫

ρ dx = vol.× ρ̄ = Q .
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Abelian global symmetry at fixed charge

The remaining eom are

ṗi = 0 ,
q̇i = 0 ,
χ̇ = f0(qi)ρ̄ .

They are solved by

pi = 0 , qi = q̄i(ρ̄) , χ = μ(ρ̄)t ,

where q̄i and μ(ρ̄) are constants.

This is the generalization of the classical solution we found in the
introduction,

a4 ∝ ρ̄ χ̇ ∝ ρ̄1/2

Domenico Orlando Attacking strong coupling with large charge
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ṗi = 0 ,
q̇i = 0 ,
χ̇ = f0(qi)ρ̄ .

They are solved by

pi = 0 , qi = q̄i(ρ̄) , χ = μ(ρ̄)t ,

where q̄i and μ(ρ̄) are constants.

This is the generalization of the classical solution we found in the
introduction,

a4 ∝ ρ̄ χ̇ ∝ ρ̄1/2

Domenico Orlando Attacking strong coupling with large charge



Classical analysis Goldstones Canonical quantization Conformal dimensions Conclusions

Outline

Classical analysis

Goldstones

Canonical quantization

Conformal dimensions

Conclusions

Domenico Orlando Attacking strong coupling with large charge



Classical analysis Goldstones Canonical quantization Conformal dimensions Conclusions

Variational description

We want to find a state v that minimizes

⟨v|H|v⟩

under the constraints

⟨v|v⟩ = 1 and ⟨v|ρ|v⟩ = ρ̄ .

We introduce the Lagrange multipliers E, m and minimize

⟨v|H− E0 −mρ|v⟩ .

The solution is

(H− E0 −mρ) |v⟩ = 0 .
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Variational description

To reproduce the classical solution

⟨v|χ̇|v⟩ = μ ,

where μ is the value found earlier. Now

⟨v|χ̇|v⟩ = ⟨v|[χ,H]|v⟩ = m ⟨v|[χ,ρ]|v⟩ ,

and since χ, ρ are canonically conjugate, we obtain

m = μ .

The quantum Hamiltonian is given by

H = H−μρ− E0 .

μ is now a fixed chemical potential. The vacuum satisfies H |v⟩ = 0.
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Goldstones

The chemical potential breaks explicitly
the symmetry of H from G to G′ ⊂ G

H = H−μρ .

The ground state |v⟩ breaks spontaneously to G′′ ⊂ G′.
Goldstone tells us: dim(G′/G′′) low energy massless DOF.

We have singled out the time. The system is non-relativistic.

antiferromagnet ω ∝ p

ferromagnetω ∝ p2 (count double)
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A classical vector O(2n) model

Consider the Lagrangian of a O(2n) vector model on R ×Σ

L = 1
2 ∂μφa ∂μφa − 1

2V(φaφa), a = 1, . . . , 2n ,

We introduce complex variables

ϕ1 =
1√
2
(φ1 + iφ2) , . . .

so the O(2)n ⊂ O(2n) generators act as rotations:{
ϕi,εjQj

}
= εjδijϕi (no sum).

We impose the conditions∫
Σ
dvolρi = Qi = V× ρ̄i ,

where the ρ̄i are fixed.
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Ground state

Surprise! The homogeneous ground state solution is

ϕi =
1√
2
Ai eiμt

where Ai and μ depend on the fixed charges ρ̄i.
The phase μ is the same for all fields, even if all the charges ρ̄i are
different.

We are really fixing only one O(2) charge – the values of ρ tell us
how this is embedded in the maximal O(2)n torus.
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The classical solution

In the IR the theory becomes conformal (Wilson–Fisher).
The Lagrangian is approximately scale invariant and the potential
must have the form

V(∥φ∥) = R
16

∥φ∥2 + λ
3
∥φ∥6,

The classical ground state at fixed charge has energy

EΣ(Q) =
c3/2√
V
Q3/2 +

c1/2

2
R
√
VQ1/2 +O

(
Q−1/2

)
,

▶ there are two universal parameters: c3/2 and c1/2 (viz. b and λ)
▶ the result depends on the manifold Σ only via the volume V and

the scalar curvature R
How do the higher derivatives and quantum corrections change this
result? How controlled is our approximation?

Domenico Orlando Attacking strong coupling with large charge



Classical analysis Goldstones Canonical quantization Conformal dimensions Conclusions

How many Goldstones?

Using the variational approach, the quantum Hamiltonian is

H = H−μ(ρ1 +ρ2 + · · ·+ρk) ,

This breaks the O(2n) symmetry explicitly to U(n). The vacuum

⟨ϕi⟩ = Ai,

breaks U(n) spontaneously to U(n− 1).
The dimension of the coset is

dimG/H = dimU(n)− dimU(n− 1) = 2n− 1.

The system is non-relativistic. This is only an upper bound on the
number of Goldstones.

Domenico Orlando Attacking strong coupling with large charge
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How many Goldstones?

Expand around the classical solution.{
ϕi = eiμtϕ̂i , i = 1, . . . , n− 1

ϕn =
1√
2
eiμt+iφ̂2n/v(v+ φ̂2n−1

)
The (unbroken) U(n− 1) symmetry is then realized as ϕ̂i 7→ Ũ j

i ϕ̂j.
The second order Lagrangian becomes:

L(2) =
n

∑
i=1

(∂t−iμ)ϕ∗
i (∂t+iμ)ϕi −

n

∑
i=1

∇ϕ∗
i ∇ϕi

−
n

∑
i=1
μ2ϕ∗

i ϕi −
2c2

1− c2
μ2φ2

2n−1 ,

where μ2 = V′(v2) (eom) and c < 1 is a dimensionless parameter.

ask
ford

etail
s
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How many Goldstones?

Expanding for large μ (i.e. for large ρ̄) we compute the inverse
propagator and the dispersion relations.

ask
ford

etail
s

The massless modes are:

ω2
r = c2p2 +

(
1− c2

)3
p4

4μ2 +O
(
μ−4

)
one time

ω2
nr =

p4

4μ2 − p6

8μ4 +O
(
μ−6

)
n− 1 times

We have n− 1 non-relativistic Goldstones ω ∝ p2 and one relativistic
one ω ∝ p. The non-relativistic ones are suppressed at large ρ̄.

Non-relativistic ones “count double” [Nielsen and Chadha] [Murayama and

Watanabe] and we have 2× (n− 1) + 1 = 2n− 1 = dimG/H.
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How many Goldstones?

Expanding for large μ (i.e. for large ρ̄) we compute the inverse
propagator and the dispersion relations.
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Canonical quantization of the non-Abelian sector

The quadratic Hamiltonian in the sector

Hi = π∗
i πi +∇ϕ∗

i ∇ϕi +μ2ϕ∗
i ϕi −μ(πiϕi −π∗

i ϕ
∗
i ) .

Go to Fourier space and expand in terms of canonical operators:

ϕi(p) =
1√

2ω̃(p)
(ai(p) + b†

i (−p)) ,

The Hamiltonian is diagonalized by the choice ω̃2 = p2 +μ2:

Hi(p) =
(√

p2 +μ2 −μ
)
a†
i (p)ai(p)

+

(√
p2 +μ2 +μ

)
b†
i (p)bi(p) .

We have broken Lorentz invariance, and the symmetry between
particles and antiparticles.

For μ≫ 1, a is a Goldstone with ω ∼ p2

2μ and b is massive.
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Non-relativistic Goldstones

Write the Lagrangian

Li = (∂t−iμ)ϕ∗
i (∂t+iμ)ϕi −μ2ϕ∗

i ϕi −∇ϕ∗
i ∇ϕi .

If μ≫ ∂t, this is a massless Schrödinger particle:

Li = iμ(ϕ̇∗
i ϕi −ϕ∗

i ϕ̇i)−∇ϕ∗
i ∇ϕi ,

The term μ(ρ1 + · · ·+ρk) is a Berry’s phase and we get only one
classical Goldstone particle instead of two (ferromagnet).

ϕ and ϕ∗ are canonically conjugate to each other. The Goldstones
“count double”.
Non-relativistic Goldstones do not contribute to the Casimir energy.
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The Abelian sector

The Hamiltonian for the sector (where the mass
term appears) is

Hn =
1
2

[
π2

2n−1 +π
2
2n + (∇φ2n−1)

2 + (∇φ2n)
2

+μ2
(
1+ 3c2

1− c2
φ2

2n−1 +φ
2
2n

)
−μ(π2n−1φ2n −π2nφ2n−1)

]
.

Also this can be diagonalized in the oscillators:

Hn = c p a†
n(p)an(p) +

2μ√
1− c2

b†
n(p)bn(p) +O

(
1
μ

)
.

We see that a is a Goldstone with ω = cp and b is massive.
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Suppression of the interactions

We have assumed that the quadratic part of the Hamiltonian is the
most important and that the rest can be treated as small.
Expand the potential:

V(φ) = V(v2) +μ2λi1i2ϕi1ϕi2 +μ
2λi1i2i3

v
ϕi1ϕi2ϕi3 + . . .

+μ2λi1...im

vm−2 ϕi1 . . .ϕim ,

where the λ are dimensionless constants and of order O(1).
To diagonalize H2, ϕi is of order O

(
μ−1/2) so

μ2λi1...im

vm−2μm/2 =
λi1...im

vm−2μm/2−2 .

v has the dimensions of a field, [v] = d/2− 1. Overall we have

λi1...im

μ−d+m/2(d−1)
=

λi1...im

ρ̄(m/2−d/(d−1))
=
λi1...im

ρ̄Ωm
Ωm > 0 .
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Does this work? A small (big) surprise

On a torus Σ = T2, the prediction is that the energies go like

ET2 =
c3/2

L
Q3/2 + cT

2

0 +O
(
Q−1

)
c0 is the Casimir energy of our relativistic Goldstone c0 = −0.504/L

5 10 15
Q

2

4

6

8

10

E

c3/2 = 0.1232(4) for the O(2) model.
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FIG. 2. The (n, M2)-trajectories for the states a0(10++), a2(12++) and a4(14++) with a) µ2 = 1.38 GeV2 and b) µ2 = 1.10
GeV2; Two variants for the f2(02

++)-trajectories with the slope parameter c) µ2 = 1.38 GeV2 and d) µ2 = 1.10 GeV2. The
f0(00

++)-trajectories for e) real resonance states and f) K-matrix pole states. As in Fig. 1, the open circles stand for states
predicted by the present classification.

5

c3/2 = 0.1232(4) for the O(2) model.
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The point

▶ We started with a generic O(2n)-invariant model
▶ Fixing n U(1) charges breaks the symmetry explicitly to U(n). We

have a controlling parameter ρ̄.
▶ The ground state breaks spontaneously to U(n− 1)
▶ There is one relativistic Goldstone (with c < 1) and n− 1

non-relativistic Goldstones, controlled by ρ̄−1.
▶ We diagonalize the quantum Hamiltonian
▶ In the resulting theory, couplings λ in the initial model are

suppressed by powers of ρ̄−1.
▶ In the limit of ρ̄→ ∞, the system is well described by a single

Goldstone mode.
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Radial quantization

I have promised to compute the conformal dimensions. Up to this
point I have computed energies. How are these related?

We want to describe a conformal theory, so we can start from flat
space Rdand perform a conformal transformation to R × Sd−1:

ds2 = dτ2 + dΩ2
d−1 =

1
r2

(
dr2 + r2 dΩ2

d−1

)
,

The initial time coordinate has now become the radius r and the
Hamiltonian is identified with the dilatation operator.
A state with fixed charge and energy E on Rt × Sd−1 is mapped to an
operator on Rd with conformal dimension

Δ = E .
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Radial quantization

ΔSd−1

Rd

H

R × Sd−1

Sd−1
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The action

Up to higher-derivative terms the action must be:

S = 1
2

∫
dtdΩ [gμν ∂μφa ∂νφa − V(φaφa)] ,

where the potential becomes now

V(φaφa) =
2n

∑
a=1

(
R
8
(φa)2 +

λ
3
(φa)6

)
,

R is the Ricci scalar R = 2.
Naturalness implies λ = O(1), so no standard perturbation theory.

In the limit of large charge, we have a single Goldstone mode and
the quantum corrections are controlled by λ/Q

# ≪ 1.
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Energies

We need just to evaluate the energy of the ground state:

E0 = 4π

(
2λ1/4

3b3/2 ρ̄
3/2 +

R
16b1/2λ1/4

√
ρ̄+O

(
ρ̄−1/2

))
.

The effect of the Goldstone is of order O
(
Q0
)
and is the one-loop

vacuum energy. One just needs to compute a determinant:

log det
(
− ∂2

0+
1
2
∇2
)
=

1√
2

∞

∑
l=0

(2l+ 1)
√
l(l+ 1)

which is ζ-function regularized:

EG ≃ 1

2
√
2

(
−1

4
− 0.015

)
= −0.093.

This is a universal prediction for our construction.
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Conformal dimensions

We can put it all together

ΔQ = E0 + EG

=
c3/2

2
√
π
Q

3/2
+ 2c1/2

√
πQ1/2 − 0.093+O

(
Q

−1/2
)

.

This is a prediction for the conformal dimensions at the Wilson–Fisher
point of the O(n) model.

There are two parameters c3/2 and c1/2 that depend on the details of
the model.
They can be computed e.g. on the lattice.
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Large charge and the lattice

2 4 6 8 10
J

2

4

6

8

10

12

Δ
Conformal dimensions in the O(2) model

prediction

lattice

c3/2 = 1.194(4)
c1/2 = 0.077(4)
c0 = −0.093

▶ c3/2 is universal: the same as for the torus energy result;
▶ c0 is NNL order and the computed value is compatible with the

measurement.
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Summary of the results

Very concrete examples where a strongly-coupled CFT is simplified in
a special sector.

O(N) model in three dimensions: in the limit of large U(1) charge Q,
we computed the conformal dimensions in a controlled perturbative
expansion.

We have found an explicit formula for the dimension of the
lowest-energy state:

ΔQ = c3/2Q3/2 + c1/2Q1/2 − 0.093

The very same formula describes the large-R-charge sector of a
supersymmetric N = 2,d = 3 model and dimensions of monopoles
in a dual U(1) gauge theory.
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Now what?

▶ We would like to get a better understanding of the O(n) model.
In particular we would like to compute the coefficients c3/2 and
c1/2 from first principles;

▶ similarly, we would like to compute these coefficients for the
W = Φ3 model.

▶ Why does the approach work numerically for small charge?

We have described a simple example.

We hope our framework is powerful enough to provide insights in
the large–Q behavior of other strongly coupled CFTs which are in
general not tractable with known methods.
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Thank you

for your attention
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The Abelian sector

The expansion of the fields in oscillators is more complicated.
At large μ we find

φ2n−1(p) ∼
(1− c2)1/4

2
√
μ

(
bn(p) + b†

n(−p)
)

− 1− c2

2c
p
μ

√
c
2p

(
an(p) + a†

n(−p)
)

,

φ2n(p) ∼ i
√

c
2p

(
an(p)− a†

n(−p)
)
+ i

(1− c2)3/4

2
√
μ

(
bn(p)− b†

n(−p)
)

.

At lowest order, φ2n is the Goldstone and φ2n−1 the massive field.

The Berry’s phase term changes the spin wave velocity but does not
affect the spectrum qualitatively (antiferromagnet).
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Suppression of the interactions

We have assumed that the quadratic part of the Hamiltonian is the
most important and that the rest can be treated as small.

At leading order in μ, φ2k is the relativistic Goldstone boson.
Because of the O(2n) invariance, V(φ) does not depend on φ2k, so
the field can appear only in two higher order terms. They are:

vφ2k−1
φ2

2k
v2

and φ2
2k−1

φ2
2k
v2

.

Expanding in oscillators

φ2k−1
φ2

2k
v

= O
(

1
v
√
μ

)
and φ2

2k−1
φ2

2k
v2

= O
(

1
v2
√
μ

)
They both correct the propagator of the Goldstone by a term
(v2μ)−1 ≪ 1.
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Suppression of the interactions

λi1...im

ρ̄(m/2−d/(d−1))
=
λi1...im

ρ̄Ωm
.

▶ For m ≥ 4,

(d− 1)Ωm = m
2 (d− 1)− d > 0

and the interactions are suppressed.
▶ The only dangerous term is d = 3, m = 3. The cubic term can be

either

φ3
2k−1 or φ2k−1ϕ2

i

they lead to O(1) corrections to the mass of φ2k−1, which is of
order O(μ).
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The supersymmetric W = Φ3 model

Consider the N = 2 supersymmetric theory in D = 3 with a single
chiral superfield Φ, Kähler potential K = Φ†Φ and superpotential
W = 1/3Φ3.
This theory is well adapted to our formalism:

▶ it flows to an interacting superconformal fixed point [Barnes]

[Jafferis]

▶ it has no marginal deformations or small parameters
▶ it has a continuous global symmetry (the R-symmetry)

We can compute the dimension of the lowest operator |Q⟩ of charge
Q in the limit Q ≫ 1.
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Scale invariance

We choose conventions similar to the O(2) model.
SinceW ∼ Φ3, the field has dimension

Φ ∝ [mass]2/3

In the IR this means that the Kähler potential goes like K ∝ |Φ|3/2 and
we fix it to

K =
16bk
9

|Φ|3/2

so that kinetic term and potential are

Lkin = bk
∂φ ∂φ
|φ|1/2

V =
1
bk

|φ|9/2
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Reduction to Goldstones

At this point everything goes like in the O(2) model: separate
absolute value and phase and write the action as

LIR = b̂k|φ|3/2(∂χ)2 + b̂k
(∂|φ|)2

|φ|1/2 + V(|φ|)

+ higher derivatives+ fermions

For configurations with |φ| constant the minimum is for

(∂χ)2 ∝ |φ|3

We obtain precisely the same form for the action as we had for the
Goldstone in the O(2) model.
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Reduction to Goldstones

What about the fermions? Because of the Yukawa coupling they get
a rest energy of order E ∼ |∂0χ| ∼ ρ1/2: they are very massive and
decouple from the problem.

We have exactly the same dynamics as we found in the O(2) model.
In other words we are in the same universality class and the formula
for the dimension of the operator Q still stands.

ΔQ = c3/2Q3/2 + c1/2Q1/2 − 0.093

This is somewhat surprising: one might have expected
ΔQ = Q+O(Q0) because of supersymmetry.
We find that the states |Q⟩ do not saturate the BPS bound at all: the
lowest state in the large-Q sector is far above the supersymmetric
bound! [Eager].

Domenico Orlando Attacking strong coupling with large charge



Suppression of the interactions Other systems

Monopoles in three dimensions

We are in three dimensions: we can use a duality transformation to
an Abelian theory.

▶ The Noether current maps to the monopole current
▶ The total Noether charge becomes the magnetic flux on the

sphere
▶ The Noether charge of an operator becomes the monopole

number

We find that at leading order in the derivative expansion,
Weyl-invariance, diffeomorphism covariance, and charge
quantization uniquely determine the relation:

Fμν =
√
2|∂χ|(∗dχ)μν =

1√
2
|∂χ|

√
|g|εμνσ∂σχ,
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Monopoles in three dimensions

The duality means that the effective Lagrangian for the field strength
is immediately derived from the leading Goldstone action.

Lmon = bχ|F|3/2 + . . . .

This is consistent with the fact that the Weyl weight of the Lagrangian
is 3.

An immediate consequence of the form of the action is that the
dimension of the lowest-lying monopole operator scales ea
monopole number to the 3

2 (for large monopole charge).

Domenico Orlando Attacking strong coupling with large charge
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