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Why are we here? Conformal field theories

critical phenomena
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Why are we here? Conformal field theories are hard

Most conformal field theories (CFTs) lack nice limits where they
become simple and solvable.
No parameter of the theory can be dialed to a simplifying limit.

There are sometimes sectors of the theory where anomalous
dimension and OPE coefficients simplify.

Typically this happens in presence of a symmetry.

We can limit ourselves to a subset of the theory where the associated
quantum number Qs large.

Q becomes the controlling parameter in a perturbative expansion.
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no bootstrap here!

This approach is
completely orthogonal
to bootstrap.

We will use an effective
action.

We will access sectors
that are exponentially
difficult to reach with
bootstrap.
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Summary of the results

Today we will to describe a very concrete example where this type of
simplification happens.

We consider the O(N) vector model in three dimensions, which is
known to flow in the IR to a conformal fixed point.

We will find an explicit formula for the dimension of the
lowest-energy state:

_ C3/2 ~3/2 1/2 _ —1/2
AQ_—ZﬁQ +2y/mer 2Q 0.093+(9(o )

We will see how the very same formula describes the large-R-charge
sector of a supersymmetric N’ = 2, d = 3 model.
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Summary of the results

Conformal dimensions in the O(2) model
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Scales
We want to write a Wilsonian effective action.

Choose a cutoff A, separate the fields into high and low frequency
®H, & and do the path integral over the high-frequency part:

w



Scales

o

igh anerlow frequency
oVer the bigh-frequency part:

We want to write a Wilsonian cctive ac%
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Scales

We want to write a Wilsonian e

cctive acﬁd

igh anerlow frequency
oVer the bigh-frequency part:

We need to understand the scales.

» We look at a finite box of typical length R
» The U(1) charge Q fixes a second scale o'/? ~ Q'/?/R
We think of the CFT as a Wilsonian effective action at the fixed point
with
1/2

1
f—?<</\<<p”2~T<</\uv=92=>O>>1

Claim: For A < p'/2 the effective action is weakly coupled and
under perturbative control in powers of o' i
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The O(N) model

The UV Lagrangian of the O(N) vector model is of the form
Ly =09, 070" 6% — (6% 0°)°,
Wilson and Fisher showed that this flows to a conformal IR fixed point.

UV theory RGlow 1R conformal fixed point.

The idea is to make use of this fact to write an effective Wilsonian
action.

w



Approximate scale invariance

Consider the O(2) case.
Concretely we set ¢ = ae'* and we give a large vacuum
expectation value (vev) to a:

AN K& < P

In this limit the Lagrangian is (approximately) scale-invariant with
corrections ~ A /a.
For dimensional reasons it must be
1 2, b, 2_Ro, A g
Lr = 5(0ua)" + 5a(dux) —ga” — za
+ (higher derivative terms).

where R is the scalar curvature, and b and A are numerical constants.

u




 Introduction —— Effective action from classical scale invariance . Quantum analysis -
Approximate scale invariance

The charge density is simply
o = 6°%R = b?a’
ox

and using the equations of motion (eom) a* ~ b?/ A x? we find that
on shell the charge density and its integral are

o ~ bvaat Q~ 4nR’bV A a* Ey ~ 0%/?

so that the condition A < a? < g? on the scales becomes (as
promised)

1/2

1
—E AL <&

R R

which is consistent if the charge is large

Q>>1 uw’



Big charge, small charge

The approximation | am using is supposed to work for large charges.
Isn't this a bit too good to be true?

Conformal dimensions in the O(2) model
A
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Big charge, small charge

The approximation | am using is supposed to work for large charges.
Isnt this a bit too good to be true?

Something very similar

1 happens with Regge
trajectories. The precise
1 prediction is

] m2ch<1+(’)(J—1)>

M?, GeV?

1300
£,(00*")

but experimentally everything
(e) 1 works so well that String

1s(00) Theory was invented from
e here.
The unreasonable effectiveness of the large quantum number

expansion.

u
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RG analysis

Now | have to justify my claims:

>

Show that the classical solution is precisely of the kind found in
the previous slide.

See how the fluctuations on top of the classical solutions are
described by Goldstone modes.

Show that the higher order terms are suppressed in 1/Q for any
value of the couplings b and A.

Derive the formula for the conformal dimensions.

u
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Abelian global symmetry at fixed charge

Consider a classical system described by Hamiltonian H with a
conserved Abelian global symmetry:

{H,Q} =0.
we impose the first-class constraint

Qz/pdx:azconst.

and the corresponding gauge transformation ¢ . f= {f, € Q}.
Introduce the canonical conjugate x to the density o

{x,Q}=1, sothat d.x = ¢,

and assume all the other variables (p;, gi) to be gauge invariant.

u



Abelian global symmetry at fixed charge

For concreteness, consider a natural Hamiltonian system:

N

%Z (@)pi + 3 Egk )(Va)® +Y(q).
k=0 k=0

We want to find the ground state of this system.

The Hamiltonian is a sum of positive terms, we minimize them
separately.

Because of the constraint, o # 0, but we are free to set
Vg=0, Vx=0, pi=0 i=1,...,N.

Since nothing depends on the position anymore, the constraint
becomes

/p dx=vol.x p = Q.
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Abelian global symmetry at fixed charge

The remaining eom are

pi = O/
qi - O/
¥ =fo(qi)p.

They are solved by
Pi:O; q:':(_?i(b), X:M(/_O)t;
where g;and u () are constants.

This is the generalization of the classical solution we found in the
introduction,

a40<b )'(0<7o1/2
v
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Variational description

We want to find a state v that minimizes
(MHIY
under the constraints
(vVlv) =1 and (v|p|v)=h.
We introduce the Lagrange multipliers E, m and minimize
(VIH—Ey —mp]v).
The solution is
(H=Ey—mp)|v) =0.

u



Variational description

To reproduce the classical solution
Mx) = u,

where u is the value found earlier. Now
Mxv) = (vl HY) = m L, o]1),

and since x, p are canonically conjugate, we obtain
m= u.

The quantum Hamiltonian is given by
H=H-—up—E.

u is now a fixed chemical potential. The vacuum satisfies H |v) = 0.
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Goldstones

The chemical potential breaks explicitly
the symmetry of Hfrom Gto G' C G

H=H—-wup.
The ground state |v) will break spontaneously the symmetry to

G'c .
Goldstone tells us: dim(G'/G"”) low energy massless DOF.

AWe have singled out the time. The system is non-relativistic.

¢ * ¢ * $ * $ * 4> * antiferromagnet w « p
PP ot

u
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A classical vector O(2n) model

Consider the Lagrangian of a O(2n) vector model
Ezlau¢’aau¢a_%v(¢a¢’a)/ a:1/“'/2nl

We introduce complex variables

01 = - (61 +i0,)
1 \/E 1 2) 7o

so the O(2) C O(2n) generators act as rotations:
{0i,eQ}=c¢edj0;.
We impose the conditions

/ dvol p;=Q;=Vx p;,
b3

where the p; are fixed. v



_ Classicalanalysis  Goldstones  Canonical quantization  Conformal dimensions  Conclusions
Ground state

Surprise! In the ground state the system is homogeneous and the
solution is given by

®;= %Ai et

where A; and u depend on the fixed charges p;.
The phase u is the same for all fields, even if all the charges p; are
different.

We are really fixing only one O(2) charge — the values of o tell us
how this is embedded in the maximal O(2)" torus.

u
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The classical solution

In the IR the theory becomes conformal (Wilson—Fisher). The
Lagrangian is approximately scale invariant and the potential must
have the form

V(o) = el ]2+ Sl 015
16 3

The classical ground state at fixed charge has energy

Es(Q) = 220¥2+ I2rVVaQ? + 0(Q72),

VvV

» there are two universal parameters: c3,7 and ¢y 2
» the result depends on the manifold only via the volume V and
the scalar curvature R

How do the quantum corrections change this result? How controlled
is our approximation? v



How many Goldstones?

Using the variational approach, the quantum Hamiltonian is
H=H-u(o1+p02+--+ 0k),

This breaks the O(2n) symmetry explicitly to U(n). The vacuum
(0i)) = A,

breaks U(n) spontaneously to U(n — 1) (just rotate the vector
(@) = (A1,...,Ay) into (O,...,0,v)).
The dimension of the coset is

dim G/H = dim U(n) —dim U(n—1) = 2n—1.

The system is non-relativistic. This is only an upper bound on the
number of Goldstones.

u



How many Goldstones?

Using the variational approach, the quantum Hamiltonian is

H=H—-u(p1+ o2+ -+ 0k,

This breaks the O(2n) symmetry explicitly to U(njw. e vacuum

(0i) = A,

breaks U(n) spontaneously to U(n — 1) (just rotate the vector
(@) = (A1,...,Ay) into (O,...,0,v)).
The dimension of the coset is

dim G/H = dim U(n) —dim U(n—1) = 2n—1.

The system is non-relativistic. This is only an upper bound on the
number of Goldstones.

u
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How many Goldstones?

Pass to the Lagrangian formalism and expand around the classical
solution.

o =¢e o, i=1,...,n—1
®n = % elut+’¢2n/v(v+ $2n71)

The (unbroken) U(n — 1) symmetry is then realized as &; — Uijé)j.
The second order Lagrangian becomes:

L@ =Y @—in)of@tin)oi—Y VoiVo;
i=1 i=1
22

n
2 2 7
=Y vioieoi— S U DS, 1,
— 1—c

where u? = V/(v?) (eom) and ¢ < 1 is a dimensionless parameter. ,



How many Goldstones?
Pass to the Lagrangian formalism and expand around the classical
solution.

pi=e o, i=1,...,n—1

0, = \/Lé eiut+i$2n/V(v+ $2n71)
The (unbroken) U( ~ i as @i U,-j@)j-

The second orde

n
2 & 2.2
Y u Ol Qi — 54 821,
=

where u? = V/(v?) (eom) and ¢ < 1 is a dimensionless parameter. b
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How many Goldstones?

Expanding for large u (i.e. for large p) we compute the inverse
propagator and the dispersion relations.

w
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How many Goldstones?

w



How many Goldstones?

Expanding for large u (i.e. for large p) we compute the inverse
propagator and the dispersion relations.

The massless modes are:

w?:c2p2+(1_4(:22)p4+(’)(u_4) one time
o o beoebebedd

w%,:ruz—w—i—(?(u*é) n—1times
EXRXEEERX,

We have n — 1 non-relativistic Goldstones w « p? and one relativistic
one w o p. The non-relativistic ones are suppressed at large p.

u
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How many Goldstones?

Expanding for large u (i.e. for large p) we compute the inverse
propagator and the dispersion relations.

The massless modes are:

w§:c2p2+(1_4(:22)p4+(’)(u_4) one time
o o beoebebedd
w? :———4—1—0(;176) n—1times

Tt B EETEETERE

We have n — 1 non-relativistic Goldstones w « p? and one relativistic
one w o p. The non-relativistic ones are suppressed at large p.

Non-relativistic ones “count double” [Nielsen and Chadha] [Murayama and
Watanabe] and we have 2 x (n—1)+1=2n—1=dim G/H. v
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Canonical quantization of the non-Abelian sector

The quadratic Hamiltonian in the 069664683 sector
H=nini+VoiVoi+ueolo—u(nei—niol).

Go to Fourier space and expand in terms of canonical operators:

L__(ai(p) +bI(~p)),

oi(p) = 75(o)

The Hamiltonian is diagonalized by the choice @? = p? + u?:

Hi(p) = (\/p2 +u2 - u>af(p)af(p)
+ (\/p2 +u2+ u)b?(p)bi(p)-

We have broken Lorentz invariance, and the symmetry between
particles and antiparticles.

2
For u > 1, ais a Goldstone with w ~ f—u and b is massive. v
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Canonical quantization of the non-Abelian sector

The quadratic Hamiltonian in the 069664683 sector
H=nini+VoiVoi+ueolo—u(nei—niol).

Go to Fourier space and expand in terms of canonical operators:

L__(ai(p) +bI(~p)),

oi(p) = —’72w(p)

The Hamiltonian is diagonalized by the choice @? = p? + u?:

p2+u2+u)b?<p>b,-<p>-

We have broken Lorentz invariance, and the symmetry between
particles and antiparticles.

2
For u > 1, ais a Goldstone with w ~ f—u and b is massive. v
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Canonical quantization of the non-Abelian sector

The quadratic Hamiltonian in the 069664683 sector
H=nini+VoiVoi+ueolo—u(nei—niol).

Go to Fourier space and expand in terms of canonical operators:

L__(ai(p) +bI(~p)),

oi(p) = 75(o)

The Hamiltonian is diagonalized by the choice @? = p? + u?:

Hi(p) = (\/p2 +u2 - u>a,~+(p)af(p)
Qo

+ ( p?+ u?+
We have broken Lorentz invariance, and the symmetry betWéen
particles and antiparticles.

2
For u > 1, ais a Goldstone with w ~ f—u and b is massive. v



_ Classicalanalysis  Goldstones  Canonical quantization  Conformal dimensions  Conclusions
Non-relativistic Goldstones

Write the Lagrangian
L= (0—in)of@t+in)oi— u’oioi—VoiVo,.
If u > 9y, this is a massless Schroédinger particle:
Li=iu(ejei—o;oi)—VoiVo;,

The term u (o1 + -+ o) is a Berry's phase and we get only one
classical Goldstone particle instead of two (ferromagnet).

@ and @* are canonically conjugate to each other. The Goldstones
“count double”.
Non-relativistic Goldstones do not contribute to the Casimir energy.

u
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The Abelian sector

The Hamiltonianforthe $ ¢ ¢4 ¢4 ¢ ¢ ¢ socior (where the mass
term appears) is

1
Ho = 5| W30t + 030+ (V #20-1)" + (V 6.20)°

oy (1+3c2

T—a $5, 1+ ¢2n) — u(man_1 Pon— 77-2n¢)2n7'|)] .

Also this can be diagonalized in the oscillators:

Hy = cpab(pan(p) + 2oz Bl(p)bn(p) +O( 5 )

We see that a is a Goldstone with w = cp and b is massive.

u
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The Abelian sector

The Hamiltonianforthe $ ¢ ¢4 ¢4 ¢ ¢ ¢ socior (where the mass
term appears) is

1
Ho = 5|31 + W30+ (V62017 + (V 820

ey (1+3c2

T—a $5, 1+ ¢2n) — u(man_1 Pon— 7T2n¢2n7'|)] .

Also this can be diagonalized in the oscillators:

We see that a is a Goldstone with w = cp and b is massive.

w
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The Abelian sector

The Hamiltonianforthe $ ¢ ¢4 ¢4 ¢ ¢ ¢ socior (where the mass
term appears) is

1
Ho = 5|31 + W30+ (V62017 + (V 820

ey (1+3c2

T—a $5, 1+ ¢2n) — u(man_1 Pon— 7T2n¢2n7'|)] .

Also this can be diagonalized in the oscillators:

We see that a is a Goldstone with w = cp and b is massive.

w



The Abelian sector

The Hamiltonianforthe $ ¢ ¢4 ¢4 ¢ ¢ ¢ socior (where the mass
term appears) is

1
Hn = z [”%nf1 + n%n + (v¢2n—1

Hy = cpab(Plan(p) + 2=z Bl(P)bn(p) +O( 5 )

We see that a is a Goldstone with w = cp and b is massive.

Domenico Orlando



Suppression of the interactions

We have assumed that the quadratic part of the Hamiltonian is the
most important and that the rest can be treated as small.
Expand the potential:

2).'“2'3
V(g) = V() + u? A2g 0+ u QL PLPE+ ...
ZAH Im
+U 2<pl‘|"'(piml

where the A are dimensionless constants and of order o).
To diagonalize Hy, @;is of order O(u~"/?) so

UZ A i.eim A i.eeim
ym—2m/2 _ ym-2,m/2-2"

v has the dimensions of a field, [v] = d/2 — 1. Overall we have

Ai1---im Af1~--fm /‘["1---"m
L -dtm/2(d-1) — 5(m/2=d/(@-1)) _ pOm QOm>0.
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Does this work? A small (big) surprise

On atorus = = T?, the prediction is that the energies go like

B = 2202+ ' +0(Q)

co is the Casimir energy of our relativistic Goldstone ¢y = —0.504/L
E

10+

c3/2 = 0.1232(4) for the O(2) model.

. . . . I . . . . I -~ Q
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Does this work? A small (big) surprise

On atorus = = T?, the prediction is that the energies go like

B = 2202+ ' +0(Q)

co is the Casimir energy of our relativistic Goldstone ¢y = —0.504/L
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Does this work? A small (big) surprise

On atorus = = T?, the prediction is that the energies go like

B = 2202+ ' +0(Q)

co is the Casimir energy of our relativistic Goldstone ¢y = —0.504/L
E




The point

» We started with a generic O(2n)-invariant model

» Fixing n U(1) charges breaks the symmetry explicitly to U(n). We
have a controlling parameter p.

» The ground state breaks spontaneously to U(n — 1)

» There is one relativistic Goldstone (with c < 1) and n — 1
non-relativistic Goldstones, controlled by @'

» We diagonalize the quantum Hamiltonian

» In the resulting theory, couplings A in the initial model are
suppressed by powers of o~

» In the limit of @ — oo, the system is well described by a single
Goldstone mode.

u
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Radial quantization

| have promised to compute the conformal dimensions. Up to this
point | have computed energies. How are these related?

We want to describe a conformal theory, so we can start from flat
space R%nd perform a conformal transformation to R x S9-":

ds? =dr2+d0% , = :—2(dr2+r2d0§1>,

The initial time coordinate has now become the radius r and the
Hamiltonian is identified with the dilatation operator.

A state with fixed charge and energy E on R; x 5%~ is mapped to an
operator on RY with conformal dimension

A=E.

u
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Radial quantization

R¢ R x S




The action

Up to higher-derivative terms the action must be:
S— %/dtdQ (g4 9, 629y 67 — V(6767)],

where the potential becomes now

2n R A

V8789 = 1 (G077 + 5(0°)),
a=1

R is the Ricci scalar R = 2.

Naturalness implies A = O(1), so no standard perturbation theory.

In the limit of large charge, we have a single Goldstone mode and
. —
the quantum corrections are controlled by A /Q" < 1.

u



Energies

We need just to evaluate the energy of the ground state:

Eo=4nr 2A1/4-3/2+—\/_+0(__1/2>
0T 0N 3p2 16b1/22174

The effect of the Goldstone is of order O(Q) and is the one-loop
vacuum energy. One just needs to compute a determinant:

(oo

ot (—ag%vz) _ 2\1—@ @+ )10+ )
=0

which is ¢ -function regularized:

1 1
E —— —0.015) = —0.093.
SRR W ( )

This is a universal prediction for our construction. z
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Conformal dimensions

We can put it all together

Ao = Ey+ Eg
_ C32 /2_ —1/2
2\/_0 “+2¢1,/mQ " —0093+0(Q ).

This is a prediction for the conformal dimensions at the Wilson—Fisher
point of the O(n) model.

There are two parameters c3,, and ¢y, that depend on the details of
the model.
They can be computed e.g. on the lattice.

u



Large charge and the lattice

Conformal dimensions in the O(2) model

A
12f
10
ob c3/2 = 1.194(4) — prediction
[ Cl/2 = 0.077(4)
6 co = —0.093 o lattice
5 1 1 1 1 1 J
2 4 6 8 10

u




Large charge and the lattice

Conformal dimensions in the O(2) model

12f
10
—— prediction

o |attice
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Large charge and the lattice

Conformal dimensions in the O(2) model

A
12f
10
ob c3/2 = 1.194(4) — prediction
[ Cl/2 = 0.077(4)
6 co = —0.093 o lattice
st
2t
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 J
2 4 6 8 10

> c3/2 is universal: the same as for the torus energy result;

» ¢gis NNL order and the computed value is compatible with the
measurement. 2
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Summary of the results

Very concrete examples where a strongly-coupled CFT is simplified in
a special sector.

We have considered the O(N) model in three dimensions and seen
that in the limit of large U(1) charge Q, the system can be treated
perturbatively and non-trivial physical quantities can be calculated.

We have found an explicit formula for the dimension of the
lowest-energy state:

Ag = C3/203/2 T C1/201/2 —0.093

The very same formula describes the large-R-charge sector of a
supersymmetric N’ = 2, d = 3 model and dimensions of monopoles
in a dual U(1) gauge theory.

u



Summary of the results

Very concrete examples where a strongly-coupled CFT is simplified in
a special sector.

We have considered the O(N) model in three dimensions and seen
that in the limit of large U(1) charge Q, the system can be treated
perturbatively and non-trivial physical quantities can be calculated.

We have found an explicit formula for the dimension of the
lowest-energy state:

Ag = C3/zQ3/2 T C1/2@1/2 —0.093
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Now what?

» We would like to get a better understanding of the O(n) model.
In particular we would like to compute the coefficients c3,, and
¢y /2 from first principles;

» similarly, we would like to compute these coefficients for the
W = &3 model.

» Why does the approach work numerically for small charge?

We have described a simple example.

We hope our framework is powerful enough to provide insights in
the large-Q behavior of other strongly coupled CFTs which are in
general not tractable with known methods.

u
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Other systems
The supersymmetric W = &3 model
Monopoles in 3D

u



| Othersystems
The supersymmetric W = ®> model

Consider the N = 2 supersymmetric theory in D = 3 with a single
chiral superfield ®, Kahler potential K = ®'® and superpotential
W=1/3d3

This theory is well adapted to our formalism:

» it flows to an interacting superconformal fixed point [Barnes]
[Jafferis]

» it has no marginal deformations or small parameters
» it has a continuous global symmetry (the R-symmetry)

We can compute the dimension of the lowest operator |Q) of charge
Qinthe limit Q> 1.
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~ Othersystems
Scale invariance

We choose conventions similar to the O(2) model.
Since W ~ @3, the field has dimension

® o [mass]?/?

In the IR this means that the Kahler potential goes like K o |¢'|3/2 and
we fix it to

/<=_“;bk|cp|3"/2

so that kinetic term and potential are

XXX

kin = bk——75
o]

_ e
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~ Othersystems
Reduction to Goldstones

At this point everything goes like in the O(2) model: separate
absolute value and phase and write the action as

. ~ (9] ®|)?
ﬁR:bk|¢|3/2(ax)2+bk(|q|5|1|/)2 + V(o))

+ higher derivatives + fermions
For configurations with | ¢ | constant the minimum is for
(0x)? @]

We obtain precisely the same form for the action as we had for the
Goldstone in the O(2) model.

w



Reduction to Goldstones

What about the fermions? Because of the Yukawa coupling they get
a rest energy of order E ~ |99 x | ~ o '/?: they are very massive and
decouple from the problem.

We have exactly the same dynamics as we found in the O(2) model.
In other words we are in the same universality class and the formula
for the dimension of the operator Q still stands.

Aq = C3/2Q3/2 alx C1/zQ1/2 —0.093

This is somewhat surprising: one might have expected

Ag = Q+ O(Q°%) because of supersymmetry.

We find that the states |Q) do not saturate the BPS bound at all: the
lowest state in the large-Q sector is far above the supersymmetric
bound! [Eager].
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Monopoles in three dimensions

We are in three dimensions: we can use a duality transformation to
an Abelian theory.

» The Noether current maps to the monopole current

» The total Noether charge becomes the magnetic flux on the
sphere

» The Noether charge of an operator becomes the monopole
number

We find that at leading order in the derivative expansion,
Weyl-invariance, diffeomorphism covariance, and charge
quantization uniquely determine the relation:

1 / o
FUV:\/§|8)(|(*C{X)“V:E|8X| |9|8MV08 Xy
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Monopoles in three dimensions

The duality means that the effective Lagrangian for the field strength
is immediately derived from the leading Goldstone action.

gmon:b;(|f:‘3/2+....

This is consistent with the fact that the Weyl weight of the Lagrangian
is 3.

An immediate consequence of the form of the action is that the
dimension of the lowest-lying monopole operator scales ea
monopole number to the % (for large monopole charge).

u
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