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Why are we here?

Most conformal field theories (CFTs) lack nice limits where they
become simple and solvable.
Some of them are just in the middle of coupling-constant space, and
all anomalous dimensions are of order 1, and the OPE is just
intrinsically complicated, and no parameter of the theory can be
dialed to a simplifying limit.

Not all is lost. Even in such cases, there are sometimes sectors of the
theory where anomalous dimension and OPE coefficients simplify.

Typically this happens in presence of a symmetry: we can limit
ourselves to a subset of the theory where the associated quantum
number Q is large.
Q becomes the controlling parameter in a perturbative expansion.
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Summary of the results

Today we would like to describe a very concrete example where this
type of simplification happens.
We consider the O(N) vector model in three dimensions, which is
known to flow in the IR to a conformal fixed point.
We will show that, in the limit of large U(1) charge Q, the system can
be treated perturbatively and non-trivial physical quantities can be
calculated.
We will find an explicit formula for the dimension of the
lowest-energy state:

ΔQ = c3/2Q3/2 + c1/2Q1/2 − 0.093+O
(
Q−1/2

)
We will see how the very same formula describes the large-R-charge
sector of a supersymmetric N = 2,d = 3 model.
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Summary of the results
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Summary of the results
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Scales

We want to write a Wilsonian effective action. Choose a cutoff Λ and
separate the fields in the path integral into high and low frequency
φH,φL. Now do the path integral over the high-frequency part:

eiSΛ(φL)=
∫

DφH eiS(φH,φL)

We need to understand the scales.
▶ We want to compactify on a sphere of radius R
▶ The U(1) charge density Q fixes a second scale ρ ∼ Q/R2

The CFT is a Wilsonian effective action at a fixed point with

1
R
≪ Λ≪ ρ1/2 ∼ Q1/2

R
≪ ΛUV = g2 ⇒ Q ≫ 1

For Λ≪ ρ1/2 the effective action is weakly coupled and under
perturbative control in powers of ρ−1.
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The O(N) model

The UV Lagrangian of the O(N) vector model is of the form

LUV = ∂μφa∂μφa − g2(φaφa)2,

Wilson and Fisher showed that this flows to a conformal IR fixed point.

UV theory RG flow−−−−→ IR conformal fixed point.

The idea is to make use of this fact to write an effective Wilsonian
action.
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Approximate scale invariance

For simplicity consider the O(2) case. Concretely we set φ = aeiχ

and we give a large vacuum expectation value (vev) to a:

Λ≪ a2 ≪ g2.

In this limit the Lagrangian is (approximately) scale-invariant with
corrections ∼ Λ/a2. It has the form

LIR =
1
2
(∂μa)2 − f(a)(∂μχ)2 − V(a) + (higher derivative terms).

Here The fields have dimension

a ∝ [mass]1/2, χ ∝ [mass]0.

hence

LIR =
1
2
(∂μa)2 +

b2

2
a2(∂μχ)2 − R

8
a2 − λ

3
a6 + . . .

where R is the scalar curvature, and b and λ are numerical constants.
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Approximate scale invariance

The charge density is simply

ρ :=
δLIR

δχ̇
= b2a2χ̇

and using the equations of motion (eom) a4 ∼ b2/λχ̇2 we find that
on shell the charge density and its integral are

ρ ∼ b
√
λa4 Q ∼ 4πR2b

√
λa4 E0 ∼ ρ3/2

so that the condition Λ≪ a2 ≪ g2 on the scales becomes (as
promised)

1
R
≪ Λ≪ Q1/2

R
≪ g2

which is consistent if the charge is large

Q ≫ 1.
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RG analysis

Now I have to justify my claims:
▶ Show that the classical solution is precisely of the kind found in

the previous slide.
▶ See how the fluctuations on top of the classical solutions are

described by Goldstone modes.
▶ Show that the higher order terms are suppressed in 1/Q for any

value of the couplings b and λ.
▶ Derive the formula for the conformal dimensions.
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Abelian global symmetry at fixed charge

Consider a classical system described by Hamiltonian H with a
conserved Abelian global symmetry:

{H,Q} = 0 .

we impose the first-class constraint

Q =
∫
ρdx = Q = const .

and the corresponding gauge transformation δεf = {f,εQ}.
Introduce the canonical conjugate χ to the density ρ

{χ,Q} = 1 , so that δεχ = ε ,

and assume all the other variables (pi,qi) to be gauge invariant.
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Abelian global symmetry at fixed charge

For concreteness, consider a natural Hamiltonian system:

H = 1
2

N

∑
k=0

fk(q)p
2
k +

1
2

N

∑
k=0

gk(q)(∇qk)
2 + V(q),

with p0 = ρ, q0 = χ and fk, gk functions. We want to find the
ground state of this system.
The Hamiltonian is a sum of positive terms, we need to set them
each to zero separately.
Because of the constraint, ρ ̸= 0, but we are free to set

∇qi = 0, ∇χ = 0, pi = 0, i = 1, . . . ,N .

Since nothing depends on the position anymore, the constraint
becomes ∫

ρ dx = vol.× ρ̄ = Q .
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Abelian global symmetry at fixed charge

The remaining eom are

ṗi = ∂if0 ρ̄2 + ∂iV = 0 ,
q̇i = 0 ,
χ̇ = f0(qi)ρ̄ .

They are solved by

pi = 0 , qi = q̄i(ρ̄) , χ = f0(q̄i(ρ̄))ρ̄t = μ(ρ̄)t ,

where q̄i and μ(ρ̄) are constants.

This is the generalization of the classical solution we found in the
introduction,

a4 ∝ ρ̄ χ̇ ∝ ρ̄1/2
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Variational description

We want to find a state v that minimizes

⟨v|H|v⟩

under the constraints

⟨v|v⟩ = 1 and ⟨v|ρ|v⟩ = ρ̄ .

We introduce the Lagrange multipliers E, m and minimize

⟨v|H− E0 −mρ|v⟩ .

The solution is
(H− E0 −mρ) |v⟩ = 0 .
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Variational description

To reproduce the classical solution

⟨v|χ̇|v⟩ = μ ,

where μ is the value found earlier. Now

⟨v|χ̇|v⟩ = ⟨v|[χ,H]|v⟩ = m ⟨v|[χ,ρ]|v⟩ ,

and since χ, ρ are canonically conjugate, we obtain

m = μ .

The quantum Hamiltonian is given by

H = H−μρ− E0 .

μ is now a fixed chemical potential. The vacuum satisfies H |v⟩ = 0.
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The Goldstone

The symmetry generated by Q is broken by the ground state |v⟩, so
there is a some local operator A(x) such that ⟨v|[Q,A(0)]|v⟩ ̸= 0.∫

dd−1x ⟨v|ei(P·X+Ht)ρ e−i(P·X+Ht)A(0)|v⟩ − h.c.

= ∑
p
δ(d−1)(p) ⟨v|ρe−i(H−μQ)t|p⟩ ⟨p|A(0)|v⟩ − h.c. = const. ̸= 0

This is possible only if there is a state |χ(p)⟩ with the property that

lim
p→0

(H−μQ) |χ(p)⟩ = 0 .

This is the Goldstone.

We have singled out the time. The system is non-relativistic.
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A classical vector O(2n) model

Consider the Lagrangian of a O(2n) vector model

L = 1
2 ∂μφa ∂μφa − 1

2V(φ
aφa), a = 1, . . . , 2n ,

in Rt × Rd−1. Now, having in mind that

U(n) ⊂ O(2n),

we introduce complex variables

ϕ1 =
1√
2
(φ1 + iφ2) , ϕ2 =

1√
2
(φ3 + iφ4) , . . . ,

so the U(1) ⊂ U(n) generators act as rotations:{
ϕi,εQj

}
= εδijϕi .
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Ground state

We impose the conditions∫
dd−1xρi = Qi = vol.× ρ̄i ,

where the ρ̄i are fixed. By the same argument as before, we find that
in the ground state, the system is homogeneous and the solution is
given by

ϕi =
1√
2
Ai eiμt

where Ai and μ depend on the fixed charges ρ̄i.

ρ̄i = A2
i

√
V′(A2

1 + · · ·+ A2
n) ,

μ =
√
V′(A2

1 + · · ·+ A2
n) .

The phase μ is the same for all fields, even if all the charges ρ̄i are
different.
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How many Goldstones?

Using the variational approach, the quantum Hamiltonian is

H = H−μ(ρ1 +ρ2 + · · ·+ρk) ,

This breaks the O(2n) symmetry explicitly to U(n). The vacuum

⟨ϕi⟩ = Ai,

breaks U(n) spontaneously to U(n− 1) (just rotate the vector
⟨ϕ⃗⟩ = (A1, . . . ,An) into (0, . . . , 0, v)).
The dimension of the coset is

dimG/H = dimU(n)− dimU(n− 1) = 2n− 1.

The system is non-relativistic. This is only an upper bound on the
number of Goldstones.
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How many Goldstones?

Pass to the Lagrangian formalism and expand around the classical
solution.

ϕi = eiμtϕ̂i , i = 1, . . . , n− 1

ϕn =
1√
2
eiμt+iφ̂2n/v(v+ φ̂2n−1

)
The (unbroken) U(n− 1) symmetry is then realized as ϕ̂i 7→ Ũ j

i ϕ̂j.
The second order Lagrangian becomes:

L(2) =
n

∑
i=1

(∂t−iμ)ϕ∗
i (∂t+iμ)ϕi −

n

∑
i=1

∇ϕ∗
i ∇ϕi

−
n

∑
i=1
μ2ϕ∗

i ϕi −
2c2

1− c2
μ2φ2

2n−1 ,

where μ2 = V′(v2) (eom) and c is a dimensionless parameter.
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How many Goldstones?

We have decoupled the problem.
For the first n− 1 complex fields the inverse propagator is

Δ−1
i (p) =

( 1
2

(
ω2 − p2

)
iωμ

−iωμ 1
2

(
ω2 − p2

)) ,

while the n-th field is different because of the mass term for its real
component φ2n−1 :

Δ−1
k (p) =

(
ω2 − p2 − 4c2μ2

1−c2 2iωμ
−2iωμ ω2 − p2

)
.

The dispersion relations of the quasi-particle eigenstates are:

ω =
√
p2 +μ2 ±μ n− 1 times

ω± =

√
p2 +

2μ
1− c2

(
μ±

√
(1− c2)2p2 +μ2

)
Domenico Orlando Compensating strong coupling with large charge



Classical analysis Goldstones Canonical quantization Conformal dimensions Other systems Conclusions

How many Goldstones?

Expanding for large μ (i.e. for large ρ̄) we find:

ω2 =

(
−μ+

√
p2 +μ2

)2

=
p4

4μ2 − p6

8μ4 +O
(
μ−6

)
n− 1 times

ω2 =

(
μ+

√
p2 +μ2

)2

= 4μ2 + 2p2 +O
(
μ−2

)
n− 1 times

ω2
− = c2p2 +

(
1− c2

)3
p4

4μ2 +O
(
μ−4

)
one time

ω2
+ =

4μ2

1− c2
+
(
2− c2

)
p2 +O

(
μ−2

)
one time.

We have n− 1 non-relativistic Goldstones ω ∝ p2 and one relativistic
one ω ∝ p. The non-relativistic ones are suppressed at large ρ̄.

Non-relativistic ones “count double” [Nielsen and Chadha] [Murayama and

Watanabe] and we have 2× (n− 1) + 1 = 2n− 1 = dimG/H.
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Canonical quantization of the non-Abelian sector

The quadratic Hamiltonian in the ϕi, i = 1, . . . , n− 1 is given by

Hi = π∗
i πi +∇ϕ∗

i ∇ϕi +μ2ϕ∗
i ϕi −μ(πiϕi −π∗

i ϕ
∗
i ) .

Go to Fourier space and expand in terms of canonical operators:

ϕi(p) =
1√

2ω̃(p)
(ai(p) + b†

i (−p)) ,

πi(p) = −i
√
ω̃(p)
2

(ai(p)− b†
i (−p)) .

The Hamiltonian is diagonalized by the choice ω̃2 = p2 +μ2:

Hi(p) =
(√

p2 +μ2 −μ
)
a†
i (p)ai(p)+

(√
p2 +μ2 +μ

)
b†
i (p)bi(p) .

We have broken Lorentz invariance, and with it the symmetry
between particles and antiparticles. For μ≫ 1, a is a non-relativistic
Goldstone with ω2 ∼ p2

2μ and b is massive.
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Non-relativistic Goldstones

Another way of looking at the problem is to write the Lagrangian

Li = (∂t−iμ)ϕ∗
i (∂t+iμ)ϕi −μ2ϕ∗

i ϕi −∇ϕ∗
i ∇ϕi .

If μ≫ ∂t, the Lagrangian becomes the one of the massless
Schrödinger particle:

Li = iμ(ϕ̇∗
i ϕi −ϕ∗

i ϕ̇i)−∇ϕ∗
i ∇ϕi ,

The term μ(ρ1 + · · ·+ρk) acts like a Berry’s phase and when it
dominates, we get only one classical Goldstone particle instead of
two (ferromagnet).

A classical complex field only represents one DOF since ϕ and ϕ∗

are canonically conjugate to each other. This is why the Goldstones
“count double”.
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The Abelian sector

The Hamiltonian for the Abelian sector (where the mass term
appears) is

Hn =
1
2

[
π2

2n−1 +π
2
2n + (∇φ2n−1)

2 + (∇φ2n)
2

+μ2
(
1+ 3c2

1− c2
φ2

2n−1 +φ
2
2n

)
−μ(π2n−1φ2n −π2nφ2n−1)

]
.

Also this can be diagonalized in the oscillators:

Hn = ω−(p)a†
n(p)an(p) +ω+(p)b†

n(p)bn(p)

= c p a†
n(p)an(p) +

2μ√
1− c2

b†
n(p)bn(p) +O

(
1
μ

)
.

We see that a is a Goldstone and b is massive.
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The Abelian sector

The expansion of the fields in oscillators is more complicated.
At large μ we find

φ2n−1(p) ∼
(1− c2)1/4

2
√
μ

(
bn(p) + b†

n(−p)
)

− 1− c2

2c
p
μ

√
c
2p

(
an(p) + a†

n(−p)
)

,

φ2n(p) ∼ i
√

c
2p

(
an(p)− a†

n(−p)
)
+ i

(1− c2)3/4

2
√
μ

(
bn(p)− b†

n(−p)
)

.

At lowest order, φ2n is the Goldstone and φ2n−1 the massive field.

The Berry’s phase term changes the spin wave velocity but does not
affect the spectrum qualitatively (antiferromagnet).
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Suppression of the interactions

We have assumed that the quadratic part of the Hamiltonian is the
most important and that the rest can be treated as small.

At leading order in μ, φ2k is the relativistic Goldstone boson.
Because of the O(2n) invariance, V(φ) does not depend on φ2k, so
the field can appear only in two higher order terms. They are:

vφ2k−1
φ2

2k
v2

and φ2
2k−1

φ2
2k
v2

.

Expanding in oscillators

φ2k−1
φ2

2k
v

= O
(

1
v
√
μ

)
and φ2

2k−1
φ2

2k
v2

= O
(

1
v2
√
μ

)
They both correct the propagator of the Goldstone by a term
(v2μ)−1 ≪ 1.
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Suppression of the interactions

Now, expanding the potential:

V(φ) = V(v2) +μ2λi1i2ϕi1ϕi2 +μ
2λi1i2i3

v
ϕi1ϕi2ϕi3 + . . .

+μ2λi1 ...im

vm−2 ϕi1 . . .ϕim ,

where the λ are dimensionless constants and of order O(1).
We have seen that ϕi is of order O

(
μ−1/2) so the interaction terms

among m fields φi become

μ2λi1...im

vm−2μm/2 =
λi1...im

vm−2μm/2−2 .

v has the dimensions of a field, [v] = d/2− 1, so overall we have

λi1...im

μ−d+m/2(d−1)
=

λi1...im

ρ̄(m/2−d/(d−1))
=
λi1...im

ρ̄Ωm
.
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Suppression of the interactions

λi1...im

ρ̄(m/2−d/(d−1))
=
λi1...im

ρ̄Ωm
.

▶ For m ≥ 4,
(d− 1)Ωm = m

2 (d− 1)− d > 0

and the interactions are suppressed.
▶ The only dangerous term is d = 3, m = 3. The cubic term can be

either

φ3
2k−1 or φ2k−1ϕ2

i

they lead to O(1) corrections to the mass of φ2k−1, which is of
order O(μ).
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The point

▶ We started with a generic O(2n)-invariant model
▶ Fixing n U(1) charges breaks the symmetry explicitly to U(n). We

have a controlling parameter ρ̄.
▶ The ground state breaks spontaneously to U(n− 1)
▶ There is one relativistic Goldstone (with c < 1) and n− 1

non-relativistic Goldstones, controlled by ρ̄−1.
▶ We diagonalize the quantum Hamiltonian
▶ In the resulting theory, couplings λ in the initial model are

suppressed by powers of ρ̄−1.
▶ In the limit of ρ̄→ ∞, the system is well described by a single

Goldstone mode.
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Radial quantization

I have promised to compute the conformal dimensions at the
Wilson–Fisher point for the O(n) model in three dimensions. Up to
this point I have computed energies. How are these related?

We want to describe a conformal theory, so we can start from flat
space Rdand perform a conformal transformation to R × Sd−1:

ds2 = dτ2 + r20 dΩ
2
d−1 =

r20
r2

(
dr2 + r2 dΩ2

d−1

)
,

The initial time coordinate has now become the radius r and the
Hamiltonian is identified with the dilatation operator.
A state with fixed charge and energy E on Rt × Sd−1 is mapped to an
operator on Rd with conformal dimension

Δ = r0 E .
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The action

We only need the action. We can use large-Q.
At the Wilson–Fisher point the action is approximately
scale-invariant. The field φ has dimension 1/2.
Up to higher-derivative terms the action must be:

S = 1
2

∫
dt r20 dΩ [gμν ∂μφa ∂νφa − V(φaφa)] ,

where the potential becomes now

V(φaφa) =
2n

∑
a=1

(
R
8
(φa)2 +

λ
3
(φa)6

)
,

R is the Ricci scalar R = 2/r20.
Naturalness implies λ = O(1), so no standard perturbation theory.
In the limit of large charge, we have a single Goldstone mode and

the quantum corrections are controlled by λ/Q
1/2 ≪ 1.
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Energies

We need just to evaluate the energy of the ground state:

E0 = 4πr20

(
2λ1/4

3b3/2 ρ̄
3/2 +

R
16b1/2λ1/4

√
ρ̄+O

(
ρ̄−1/2

))
.

The effect of the Goldstone is of order O
(
Q0
)
and is the one-loop

vacuum energy. One just needs to compute a determinant:

logdet
(
− ∂2

0+
1
2
∇2
)
=

1

2
√
2

∞

∑
l=0

(2l+ 1)
√
l(l+ 1)

which is ζ-function regularized:

EG =
1

2
√
2r0

(
−1

4
− 0.015

)
.

This is a universal prediction for our construction.
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Conformal dimensions

We can put it all together

ΔQ = r0(E0 + EG)

=
λ1/4

3b3/2
√
π
Q

3/2
+

√
π

4b1/2λ1/4Q
1/2 − 0.093+O

(
Q

−1/2
)

= c3/2Q
3/2

+ c1/2Q
1/2 − 0.093+O

(
Q

−1/2
)

.

This is a prediction for the conformal dimensions at the Wilson–Fisher
point of the O(n) model.

There are two parameters c3/2 and c1/2 that depend on the details of
the model.
They can be computed e.g. on the lattice.
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Summary of the results

2 4 6 8 10
J

2

4

6

8

10

12

Δ
Conformal dimensions in the O(2) model

prediction

lattice

c3/2 = 0.3372(7) λ/3 = 2.6(1)
c1/2 = 0.255(3) b = 0.960(7)
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The supersymmetric W = Φ3 model

Consider the N = 2 supersymmetric theory in D = 3 with a single
chiral superfield Φ, Kähler potential K = Φ†Φ and superpotential
W = 1/3Φ3.
This theory is well adapted to our formalism:

▶ it flows to an interacting superconformal fixed point [Barnes]

[Jafferis]

▶ it has no marginal deformations or small parameters
▶ it has a continuous global symmetry (the R-symmetry)

We can compute the dimension of the lowest operator |Q⟩ of charge
Q in the limit Q ≫ 1.
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Scale invariance

We choose conventions similar to the O(2) model.
SinceW ∼ Φ3, the field has dimension

Φ ∝ [mass]2/3

In the IR this means that the Kähler potential goes like K ∝ |Φ|3/2 and
we fix it to

K =
16bk
9

|Φ|3/2

so that kinetic term and potential are

Lkin = bk
∂φ ∂φ
|φ|1/2

V =
1
bk

|φ|9/2
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Reduction to Goldstones

At this point everything goes like in the O(2) model: separate
absolute value and phase and write the action as

LIR = b̂k|φ|3/2(∂χ)2 + b̂k
(∂|φ|)2

|φ|1/2 + V(|φ|)

+ higher derivatives+ fermions

For configurations with |φ| constant the minimum is for

(∂χ)2 ∝ |φ|3

We obtain precisely the same form for the action as we had for the
Goldstone in the O(2) model.
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Reduction to Goldstones

What about the fermions? Because of the Yukawa coupling they get
a rest energy of order E ∼ |∂0χ| ∼ ρ1/2: they are very massive and
decouple from the problem.

We have exactly the same dynamics as we found in the O(2) model.
In other words we are in the same universality class and the formula
for the dimension of the operator Q still stands.

ΔQ = c3/2Q3/2 + c1/2Q1/2 − 0.093

This is somewhat surprising: one might have expected
ΔQ = Q+O(Q0) because of supersymmetry.
We find that the states |Q⟩ do not saturate the BPS bound at all: the
lowest state in the large-Q sector is far above the supersymmetric
bound! [Eager].
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Monopoles in three dimensions

We are in three dimensions: we can use a duality transformation to
an Abelian theory.

▶ The Noether current maps to the monopole current
▶ The total Noether charge becomes the magnetic flux on the

sphere
▶ The Noether charge of an operator becomes the monopole

number

We find that at leading order in the derivative expansion,
Weyl-invariance, diffeomorphism covariance, and charge
quantization uniquely determine the relation:

Fμν =
√
2|∂χ|(∗dχ)μν =

1√
2
|∂χ|

√
|g|εμνσ∂σχ,
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Monopoles in three dimensions

The duality means that the effective Lagrangian for the field strength
is immediately derived from the leading Goldstone action.

Lmon = bχ|F|3/2 + . . . .

This is consistent with the fact that the Weyl weight of the Lagrangian
is 3.

An immediate consequence of the form of the action is that the
dimension of the lowest-lying monopole operator scales ea
monopole number to the 3

2 (for large monopole charge).
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Summary of the results

Today we have seen some very concrete examples where a
strongly-coupled CFT is simplified in a special sector.
We have considered the O(N) model in three dimensions and seen
that in the limit of large U(1) charge Q, the system can be treated
perturbatively and non-trivial physical quantities can be calculated.
We have found an explicit formula for the dimension of the
lowest-energy state:

ΔQ = c3/2Q3/2 + c1/2Q1/2 − 0.093

The very same formula describes the large-R-charge sector of a
supersymmetric N = 2,d = 3 model.
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Now what?

▶ We would like to get a better understanding of the O(2) model.
In particular we would like to compute the coefficients c3/2 and
c1/2 from first principles;

▶ similarly, we would like to compute these coefficients for the
W = Φ3 model.

▶ Why does the approach work numerically for small charge?

We have described a simple example.

We hope our framework is powerful enough to provide insights in
the large–Q behavior of other strongly coupled CFTs which are in
general not tractable with known methods.
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Thank you

for your attention
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